Cargando…

Casein Kinase 2 Interacting Protein-1 Suppresses Glioma Cell Proliferation via Regulating the AKT/GSK3β/β-Catenin Pathway

OBJECTIVE: Casein kinase 2 interacting protein-1 (CKIP-1) has exhibited multiple functions in regulating cell proliferation, apoptosis, differentiation, and cytoskeleton. CKIP-1 also plays an important role as a critical regulator in tumorigenesis. The aim of this study is to further examine the fun...

Descripción completa

Detalles Bibliográficos
Autores principales: Xi, Yan-Guo, Ren, Deng-Peng, Jin, Jing-Yun, Zhu, Lei, Yi, Tai-Long, Shao, Xue-Fei, Sun, Sheng-Kai, Zhang, Wen-Bin, Cheng, Shi-Xiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6634126/
https://www.ncbi.nlm.nih.gov/pubmed/31355268
http://dx.doi.org/10.1155/2019/5653212
Descripción
Sumario:OBJECTIVE: Casein kinase 2 interacting protein-1 (CKIP-1) has exhibited multiple functions in regulating cell proliferation, apoptosis, differentiation, and cytoskeleton. CKIP-1 also plays an important role as a critical regulator in tumorigenesis. The aim of this study is to further examine the function of CKIP-1 in glioma cells. METHODS: The expression level of CKIP-1 protein was determined in gliomas tissues and cell lines by immunohistochemistry stain and western blotting while the association of CKIP-1 expression with prognosis was analyzed by Kaplan-Meier method and compared by log-rank test. CKIP-1 was overexpressed or silenced in gliomas cell lines. CCK-8, colony formation assay, and BrdU incorporation assay were used to determine cell proliferation and DNA synthesis. Cell cycle and apoptosis rate were determined with fluorescence-activated cell sorting (FACS) method. Then, expression of key members in AKT/GSK3β/β-catenin pathway was detected by western blot analysis. RESULTS: In the present study, we reported new evidence that CKIP-1 was reversely associated with the proliferation of glioma cells and survival in glioma patients. Additionally, the overexpressed CKIP-1 significantly inhibited glioma cell proliferation. Further experiments revealed that CKIP-1 functioned through its antiproliferative and proapoptotic activity in glioma cells. Importantly, mechanistic investigations suggested that CKIP-1 sharply suppressed the activity of AKT by inhibiting the phosphorylation, markedly downregulated the phosphorylated GSK3β at Ser9, and promoted β-catenin degradation. CONCLUSIONS: Overall, our results provided new insights into the clinical significance and molecular mechanism of CKIP-1 in glioma, which indicated CKIP1 might function as a therapeutic target for clinical treatment of glioma.