Cargando…
Predicting Lexical Norms: A Comparison between a Word Association Model and Text-Based Word Co-occurrence Models
In two studies we compare a distributional semantic model derived from word co-occurrences and a word association based model in their ability to predict properties that affect lexical processing. We focus on age of acquisition, concreteness, and three affective variables, namely valence, arousal, a...
Autores principales: | Vankrunkelsven, Hendrik, Verheyen, Steven, Storms, Gert, De Deyne, Simon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ubiquity Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6634333/ https://www.ncbi.nlm.nih.gov/pubmed/31517218 http://dx.doi.org/10.5334/joc.50 |
Ejemplares similares
-
Independency of Coding for Affective Similarities and for Word Co-occurrences in Temporal Perisylvian Neocortex
por: Liuzzi, Antonietta Gabriella, et al.
Publicado: (2023) -
Orienting to different dimensions of word meaning alters the representation of word meaning in early processing regions
por: Meersmans, Karen, et al.
Publicado: (2021) -
The "Small World of Words" free association norms for Rioplatense Spanish
por: Cabana, Álvaro, et al.
Publicado: (2023) -
Lexical Selection in Multi-Word Production
por: Janssen, Niels, et al.
Publicado: (2011) -
CONcreTEXT norms: Concreteness ratings for Italian and English words in context
por: Montefinese, Maria, et al.
Publicado: (2023)