Cargando…

Palaeo-tsunami inundation distances deduced from roundness of gravel particles in tsunami deposits

Information on palaeo-tsunami magnitude is scientifically and socially essential to mitigate tsunami risk. However, estimating palaeo-tsunami parameters (e.g., inundation distance) from sediments is not simple because tsunami deposits reflect complex transport processes. Here, we show a new approach...

Descripción completa

Detalles Bibliográficos
Autores principales: Ishimura, Daisuke, Yamada, Keitaro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635351/
https://www.ncbi.nlm.nih.gov/pubmed/31312008
http://dx.doi.org/10.1038/s41598-019-46584-z
Descripción
Sumario:Information on palaeo-tsunami magnitude is scientifically and socially essential to mitigate tsunami risk. However, estimating palaeo-tsunami parameters (e.g., inundation distance) from sediments is not simple because tsunami deposits reflect complex transport processes. Here, we show a new approach to estimate tsunami inundation distance based on the mixture ratio of gravels from several sources in tsunami deposits. We measured the roundness of source gravels in modern beach and fluvial deposits in a coastal valley in Japan through image analysis and then calculated the mixture ratio of both sediment types in tsunami deposits. Normalising the mixture ratios by inundation distances revealed an abrupt change in the mixture ratio at a constant percentile, regardless of tsunami magnitude. This relation allowed estimation of the inundation distance of palaeo-tsunamis during the last 4000 years.