Cargando…
Label-free time- and space-resolved exometabolite sampling of growing plant roots through nanoporous interfaces
Spatial and temporal profiling of metabolites within and between living systems is vital to understanding how chemical signaling shapes the composition and function of these complex systems. Measurement of metabolites is challenging because they are often not amenable to extrinsic tags, are diverse...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635491/ https://www.ncbi.nlm.nih.gov/pubmed/31312009 http://dx.doi.org/10.1038/s41598-019-46538-5 |
_version_ | 1783435892707295232 |
---|---|
author | Patabadige, Damith E. W. Millet, Larry J. Aufrecht, Jayde A. Shankles, Peter G. Standaert, Robert F. Retterer, Scott T. Doktycz, Mitchel J. |
author_facet | Patabadige, Damith E. W. Millet, Larry J. Aufrecht, Jayde A. Shankles, Peter G. Standaert, Robert F. Retterer, Scott T. Doktycz, Mitchel J. |
author_sort | Patabadige, Damith E. W. |
collection | PubMed |
description | Spatial and temporal profiling of metabolites within and between living systems is vital to understanding how chemical signaling shapes the composition and function of these complex systems. Measurement of metabolites is challenging because they are often not amenable to extrinsic tags, are diverse in nature, and are present with a broad range of concentrations. Moreover, direct imaging by chemically informative tools can significantly compromise viability of the system of interest or lack adequate resolution. Here, we present a nano-enabled and label-free imaging technology using a microfluidic sampling network to track production and distribution of chemical information in the microenvironment of a living organism. We describe the integration of a polyester track-etched (PETE) nanofluidic interface to physically confine the biological sample within the model environment, while allowing fluidic access via an underlying microfluidic network. The nanoporous interface enables sampling of the microenvironment above in a time-dependent and spatially-resolved manner. For demonstration, the diffusional flux through the PETE membrane was characterized to understand membrane performance, and exometabolites from a growing plant root were successfully profiled in a space- and time-resolved manner. This method and device provide a frame-by-frame description of the chemical environment that maps to the physical and biological characteristics of the sample. |
format | Online Article Text |
id | pubmed-6635491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-66354912019-07-24 Label-free time- and space-resolved exometabolite sampling of growing plant roots through nanoporous interfaces Patabadige, Damith E. W. Millet, Larry J. Aufrecht, Jayde A. Shankles, Peter G. Standaert, Robert F. Retterer, Scott T. Doktycz, Mitchel J. Sci Rep Article Spatial and temporal profiling of metabolites within and between living systems is vital to understanding how chemical signaling shapes the composition and function of these complex systems. Measurement of metabolites is challenging because they are often not amenable to extrinsic tags, are diverse in nature, and are present with a broad range of concentrations. Moreover, direct imaging by chemically informative tools can significantly compromise viability of the system of interest or lack adequate resolution. Here, we present a nano-enabled and label-free imaging technology using a microfluidic sampling network to track production and distribution of chemical information in the microenvironment of a living organism. We describe the integration of a polyester track-etched (PETE) nanofluidic interface to physically confine the biological sample within the model environment, while allowing fluidic access via an underlying microfluidic network. The nanoporous interface enables sampling of the microenvironment above in a time-dependent and spatially-resolved manner. For demonstration, the diffusional flux through the PETE membrane was characterized to understand membrane performance, and exometabolites from a growing plant root were successfully profiled in a space- and time-resolved manner. This method and device provide a frame-by-frame description of the chemical environment that maps to the physical and biological characteristics of the sample. Nature Publishing Group UK 2019-07-16 /pmc/articles/PMC6635491/ /pubmed/31312009 http://dx.doi.org/10.1038/s41598-019-46538-5 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Patabadige, Damith E. W. Millet, Larry J. Aufrecht, Jayde A. Shankles, Peter G. Standaert, Robert F. Retterer, Scott T. Doktycz, Mitchel J. Label-free time- and space-resolved exometabolite sampling of growing plant roots through nanoporous interfaces |
title | Label-free time- and space-resolved exometabolite sampling of growing plant roots through nanoporous interfaces |
title_full | Label-free time- and space-resolved exometabolite sampling of growing plant roots through nanoporous interfaces |
title_fullStr | Label-free time- and space-resolved exometabolite sampling of growing plant roots through nanoporous interfaces |
title_full_unstemmed | Label-free time- and space-resolved exometabolite sampling of growing plant roots through nanoporous interfaces |
title_short | Label-free time- and space-resolved exometabolite sampling of growing plant roots through nanoporous interfaces |
title_sort | label-free time- and space-resolved exometabolite sampling of growing plant roots through nanoporous interfaces |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635491/ https://www.ncbi.nlm.nih.gov/pubmed/31312009 http://dx.doi.org/10.1038/s41598-019-46538-5 |
work_keys_str_mv | AT patabadigedamithew labelfreetimeandspaceresolvedexometabolitesamplingofgrowingplantrootsthroughnanoporousinterfaces AT milletlarryj labelfreetimeandspaceresolvedexometabolitesamplingofgrowingplantrootsthroughnanoporousinterfaces AT aufrechtjaydea labelfreetimeandspaceresolvedexometabolitesamplingofgrowingplantrootsthroughnanoporousinterfaces AT shanklespeterg labelfreetimeandspaceresolvedexometabolitesamplingofgrowingplantrootsthroughnanoporousinterfaces AT standaertrobertf labelfreetimeandspaceresolvedexometabolitesamplingofgrowingplantrootsthroughnanoporousinterfaces AT rettererscottt labelfreetimeandspaceresolvedexometabolitesamplingofgrowingplantrootsthroughnanoporousinterfaces AT doktyczmitchelj labelfreetimeandspaceresolvedexometabolitesamplingofgrowingplantrootsthroughnanoporousinterfaces |