Cargando…
CRED: A Deep Residual Network of Convolutional and Recurrent Units for Earthquake Signal Detection
Earthquake signal detection is at the core of observational seismology. A good detection algorithm should be sensitive to small and weak events with a variety of waveform shapes, robust to background noise and non-earthquake signals, and efficient for processing large data volumes. Here, we introduc...
Autores principales: | Mousavi, S. Mostafa, Zhu, Weiqiang, Sheng, Yixiao, Beroza, Gregory C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635521/ https://www.ncbi.nlm.nih.gov/pubmed/31311942 http://dx.doi.org/10.1038/s41598-019-45748-1 |
Ejemplares similares
-
Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking
por: Mousavi, S. Mostafa, et al.
Publicado: (2020) -
Machine learning and earthquake forecasting—next steps
por: Beroza, Gregory C., et al.
Publicado: (2021) -
Toward improved urban earthquake monitoring through deep-learning-based noise suppression
por: Yang, Lei, et al.
Publicado: (2022) -
Criteria for Reporting and Evaluating ecotoxicity Data (CRED): comparison and perception of the Klimisch and CRED methods for evaluating reliability and relevance of ecotoxicity studies
por: Kase, Robert, et al.
Publicado: (2016) -
Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable
por: Huang, Yihe, et al.
Publicado: (2017)