Cargando…
RocA Binds CsrS To Modulate CsrRS-Mediated Gene Regulation in Group A Streptococcus
The orphan regulator RocA plays a critical role in the colonization and pathogenesis of the obligate human pathogen group A Streptococcus. Despite multiple lines of evidence supporting a role for RocA as an auxiliary regulator of the control of virulence two-component regulatory system CsrRS (or Cov...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635533/ https://www.ncbi.nlm.nih.gov/pubmed/31311885 http://dx.doi.org/10.1128/mBio.01495-19 |
Sumario: | The orphan regulator RocA plays a critical role in the colonization and pathogenesis of the obligate human pathogen group A Streptococcus. Despite multiple lines of evidence supporting a role for RocA as an auxiliary regulator of the control of virulence two-component regulatory system CsrRS (or CovRS), the mechanism of action of RocA remains unknown. Using a combination of in vitro and in vivo techniques, we now find that RocA interacts with CsrS in the streptococcal membrane via its N-terminal region, which contains seven transmembrane domains. This interaction is essential for RocA-mediated regulation of CsrRS function. Furthermore, we demonstrate that RocA forms homodimers via its cytoplasmic domain. The serotype-specific RocA truncation in M3 isolates alters this homotypic interaction, resulting in protein aggregation and impairment of RocA-mediated regulation. Taken together, our findings provide insight into the molecular requirements for functional interaction of RocA with CsrS to modulate CsrRS-mediated gene regulation. |
---|