Cargando…
Modeling Top-Down and Bottom-Up Drivers of a Regime Shift in Invasive Aquatic Plant Stable States
The evidence for alternate stable states characterized by dominance of either floating or submerged plant dominance is well established. Inspired by an existing model and controlled experiments, we conceptually describe a dynamic that we have observed in the field using a simple model, the aim of wh...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635666/ https://www.ncbi.nlm.nih.gov/pubmed/31354763 http://dx.doi.org/10.3389/fpls.2019.00889 |
_version_ | 1783435927673110528 |
---|---|
author | Strange, Emily F. Landi, Pietro Hill, Jaclyn M. Coetzee, Julie A. |
author_facet | Strange, Emily F. Landi, Pietro Hill, Jaclyn M. Coetzee, Julie A. |
author_sort | Strange, Emily F. |
collection | PubMed |
description | The evidence for alternate stable states characterized by dominance of either floating or submerged plant dominance is well established. Inspired by an existing model and controlled experiments, we conceptually describe a dynamic that we have observed in the field using a simple model, the aim of which was to investigate key interactions of the shift between invasive floating and invasive submerged plant dominance, driven by the rapid decomposition of floating plants as a consequence of herbivory by biological control agents. This study showed that the rate of switch between floating and submerged invasive plant dominance, and the point in time at which the switch occurs, is dependent on the nutrient status of the water and the density of biological control agents on floating plant populations. Therefore, top-down invasive plant biological control efforts using natural enemies can affect systems on a wider scale than the intended agent – plant level, and can be significantly altered by bottom-up changes to the system, i.e., nutrient loading. The implications of this are essential for understanding the multiple roles invasive plants and their control have upon ecosystem dynamics. The results emphasize the importance of multi-trophic considerations for future invasive plant management and offer evidence for new pathways of invasion. The model outputs support the conclusion that, after the shift and in the absence of effective intervention, a submerged invasive stable state will persist. |
format | Online Article Text |
id | pubmed-6635666 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-66356662019-07-26 Modeling Top-Down and Bottom-Up Drivers of a Regime Shift in Invasive Aquatic Plant Stable States Strange, Emily F. Landi, Pietro Hill, Jaclyn M. Coetzee, Julie A. Front Plant Sci Plant Science The evidence for alternate stable states characterized by dominance of either floating or submerged plant dominance is well established. Inspired by an existing model and controlled experiments, we conceptually describe a dynamic that we have observed in the field using a simple model, the aim of which was to investigate key interactions of the shift between invasive floating and invasive submerged plant dominance, driven by the rapid decomposition of floating plants as a consequence of herbivory by biological control agents. This study showed that the rate of switch between floating and submerged invasive plant dominance, and the point in time at which the switch occurs, is dependent on the nutrient status of the water and the density of biological control agents on floating plant populations. Therefore, top-down invasive plant biological control efforts using natural enemies can affect systems on a wider scale than the intended agent – plant level, and can be significantly altered by bottom-up changes to the system, i.e., nutrient loading. The implications of this are essential for understanding the multiple roles invasive plants and their control have upon ecosystem dynamics. The results emphasize the importance of multi-trophic considerations for future invasive plant management and offer evidence for new pathways of invasion. The model outputs support the conclusion that, after the shift and in the absence of effective intervention, a submerged invasive stable state will persist. Frontiers Media S.A. 2019-07-10 /pmc/articles/PMC6635666/ /pubmed/31354763 http://dx.doi.org/10.3389/fpls.2019.00889 Text en Copyright © 2019 Strange, Landi, Hill and Coetzee. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Strange, Emily F. Landi, Pietro Hill, Jaclyn M. Coetzee, Julie A. Modeling Top-Down and Bottom-Up Drivers of a Regime Shift in Invasive Aquatic Plant Stable States |
title | Modeling Top-Down and Bottom-Up Drivers of a Regime Shift in Invasive Aquatic Plant Stable States |
title_full | Modeling Top-Down and Bottom-Up Drivers of a Regime Shift in Invasive Aquatic Plant Stable States |
title_fullStr | Modeling Top-Down and Bottom-Up Drivers of a Regime Shift in Invasive Aquatic Plant Stable States |
title_full_unstemmed | Modeling Top-Down and Bottom-Up Drivers of a Regime Shift in Invasive Aquatic Plant Stable States |
title_short | Modeling Top-Down and Bottom-Up Drivers of a Regime Shift in Invasive Aquatic Plant Stable States |
title_sort | modeling top-down and bottom-up drivers of a regime shift in invasive aquatic plant stable states |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635666/ https://www.ncbi.nlm.nih.gov/pubmed/31354763 http://dx.doi.org/10.3389/fpls.2019.00889 |
work_keys_str_mv | AT strangeemilyf modelingtopdownandbottomupdriversofaregimeshiftininvasiveaquaticplantstablestates AT landipietro modelingtopdownandbottomupdriversofaregimeshiftininvasiveaquaticplantstablestates AT hilljaclynm modelingtopdownandbottomupdriversofaregimeshiftininvasiveaquaticplantstablestates AT coetzeejuliea modelingtopdownandbottomupdriversofaregimeshiftininvasiveaquaticplantstablestates |