Cargando…
A multivariate Poisson-log normal mixture model for clustering transcriptome sequencing data
BACKGROUND: High-dimensional data of discrete and skewed nature is commonly encountered in high-throughput sequencing studies. Analyzing the network itself or the interplay between genes in this type of data continues to present many challenges. As data visualization techniques become cumbersome for...
Autores principales: | Silva, Anjali, Rothstein, Steven J., McNicholas, Paul D., Subedi, Sanjeena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636065/ https://www.ncbi.nlm.nih.gov/pubmed/31311497 http://dx.doi.org/10.1186/s12859-019-2916-0 |
Ejemplares similares
-
Finite mixtures of matrix variate Poisson-log normal distributions for three-way count data
por: Silva, Anjali, et al.
Publicado: (2023) -
Clustering microbiome data using mixtures of logistic normal multinomial models
por: Fang, Yuan, et al.
Publicado: (2023) -
A Hierarchical Poisson Log-Normal Model for Network Inference from RNA Sequencing Data
por: Gallopin, Mélina, et al.
Publicado: (2013) -
Nitrogen limitation and high density responses in rice suggest a role for ethylene under high density stress
por: Misyura, Maksym, et al.
Publicado: (2014) -
Fitting additive Poisson models
por: Boshuizen, Hendriek C, et al.
Publicado: (2010)