Cargando…

Systematic analysis of the lysine succinylome in the model medicinal mushroom Ganoderma lucidum

BACKGROUND: Ganoderma lucidum, one of the best-known medicinal mushrooms in the world, produces more than 400 different bioactive compounds. However, the regulation of these bioactive compounds biosynthesis is still unclear. Lysine succinylation is a critical post-translational modification and has...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Guangyuan, Xu, Lili, Yu, Hao, Gao, Jie, Guo, Lizhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636155/
https://www.ncbi.nlm.nih.gov/pubmed/31311503
http://dx.doi.org/10.1186/s12864-019-5962-0
Descripción
Sumario:BACKGROUND: Ganoderma lucidum, one of the best-known medicinal mushrooms in the world, produces more than 400 different bioactive compounds. However, the regulation of these bioactive compounds biosynthesis is still unclear. Lysine succinylation is a critical post-translational modification and has many important functions in all aspects of eukaryotic and prokaryotic cells. Although it has been studied for a long time, its function is still unclear in G. lucidum. In this study, a global investigation was carried out on the succinylome in G. lucidum. RESULTS: In total, 382 modified proteins which contain 742 lysine succinylated sites were obtained. The proteomics data are available through ProteomeXchange with the dataset accession number PXD013954. Bioinformatics analysis revealed that the succinylated proteins were distributed in various cellular biological processes and participated in a great variety of metabolic pathways including carbon metabolism and biosynthesis of secondary metabolites. Notably, a total of 47 enzymes associated with biosynthesis of triterpenoids and polysaccharides were found to be succinylated. Furthermore, two succinylated sites K90 and K106 were found in the conserved Fve region of immunomodulatory protein LZ8. These observations show that lysine succinylation plays an indispensable role in metabolic regulation of bioactive compounds in G. lucidum. CONCLUSIONS: These findings indicate that lysine succinylation is related to many metabolic pathways, especially pharmacologically bioactive compounds metabolism. This study provides the first global investigation of lysine succinylation in G. lucidum and the succinylome dataset provided in this study serves as a resource to further explore the physiological roles of these modifications in secondary metabolism. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-019-5962-0) contains supplementary material, which is available to authorized users.