Cargando…

Ameliorative Effect of Berberine on Neonatally Induced Type 2 Diabetic Neuropathy via Modulation of BDNF, IGF-1, PPAR-γ, and AMPK Expressions

Neonatal-streptozotocin (n-STZ)-induced diabetes mimics most of the clinicopathological symptoms of type 2 diabetes mellitus (T2DM) peripheral neuropathy. Berberine, a plant alkaloid, is reported to have antidiabetic, antioxidant, anti-inflammatory, and neuroprotective potential. The aim of the pres...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Guangju, Yan, Mingzhu, Guo, Gang, Tong, Nanwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636227/
https://www.ncbi.nlm.nih.gov/pubmed/31360147
http://dx.doi.org/10.1177/1559325819862449
_version_ 1783436031272419328
author Zhou, Guangju
Yan, Mingzhu
Guo, Gang
Tong, Nanwei
author_facet Zhou, Guangju
Yan, Mingzhu
Guo, Gang
Tong, Nanwei
author_sort Zhou, Guangju
collection PubMed
description Neonatal-streptozotocin (n-STZ)-induced diabetes mimics most of the clinicopathological symptoms of type 2 diabetes mellitus (T2DM) peripheral neuropathy. Berberine, a plant alkaloid, is reported to have antidiabetic, antioxidant, anti-inflammatory, and neuroprotective potential. The aim of the present study was to investigate the potential of berberine against n-STZ-induced painful diabetic peripheral polyneuropathy by assessing various biochemical, electrophysiological, morphological, and ultrastructural studies. Type 2 diabetes mellitus was produced neonatal at the age of 2 days (10-12 g) by STZ (90 mg/kg intraperitoneal). After confirmation of neuropathy at 6 weeks, rats were treated with berberine (10, 20, and 40 mg/kg). Administration of n-STZ resulted in T2DM-induced neuropathic pain reflected by a significant alterations (P < .05) in hyperalgesia, allodynia, and motor as well as sensory nerve conduction velocities whereas berberine (20 and 40 mg/kg) treatment significantly attenuated (P < .05) these alterations. Berberine treatment significantly inhibited (P < .05) STZ-induced alterations in aldose reductase, glycated hemoglobin, serum insulin, hepatic cholesterol, and triglyceride levels. The elevated oxido-nitrosative stress and decreased Na-K-ATPase and pulse Ox levels were significantly attenuated (P < .05) by berberine. It also significantly downregulated (P < .05) neural tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 messenger RNA (mRNA), and protein expressions both. Streptozotocin-induced downregulated mRNA expressions of brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF-1), and peroxisome proliferator-activated receptors-γ (PPAR-γ) in sciatic nerve were significantly upregulated (P < .05) by berberine. Western blot analysis revealed that STZ-induced alterations in adenosine monophosphate protein kinase (AMPK; Thr-172) and protein phosphatase 2C-α protein expressions in dorsal root ganglia were inhibited by berberine. It also attenuated histological and ultrastructural alterations induced in sciatic nerve by STZ. In conclusion, berberine exerts its neuroprotective effect against n-STZ-induced diabetic peripheral neuropathy via modulation of pro-inflammatory cytokines (TNF α, IL-1β, and IL-6), oxido-nitrosative stress, BDNF, IGF-1, PPAR-γ, and AMPK expression to ameliorate impaired allodynia, hyperalgesia, and nerve conduction velocity during T2DM.
format Online
Article
Text
id pubmed-6636227
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-66362272019-07-29 Ameliorative Effect of Berberine on Neonatally Induced Type 2 Diabetic Neuropathy via Modulation of BDNF, IGF-1, PPAR-γ, and AMPK Expressions Zhou, Guangju Yan, Mingzhu Guo, Gang Tong, Nanwei Dose Response Original Article Neonatal-streptozotocin (n-STZ)-induced diabetes mimics most of the clinicopathological symptoms of type 2 diabetes mellitus (T2DM) peripheral neuropathy. Berberine, a plant alkaloid, is reported to have antidiabetic, antioxidant, anti-inflammatory, and neuroprotective potential. The aim of the present study was to investigate the potential of berberine against n-STZ-induced painful diabetic peripheral polyneuropathy by assessing various biochemical, electrophysiological, morphological, and ultrastructural studies. Type 2 diabetes mellitus was produced neonatal at the age of 2 days (10-12 g) by STZ (90 mg/kg intraperitoneal). After confirmation of neuropathy at 6 weeks, rats were treated with berberine (10, 20, and 40 mg/kg). Administration of n-STZ resulted in T2DM-induced neuropathic pain reflected by a significant alterations (P < .05) in hyperalgesia, allodynia, and motor as well as sensory nerve conduction velocities whereas berberine (20 and 40 mg/kg) treatment significantly attenuated (P < .05) these alterations. Berberine treatment significantly inhibited (P < .05) STZ-induced alterations in aldose reductase, glycated hemoglobin, serum insulin, hepatic cholesterol, and triglyceride levels. The elevated oxido-nitrosative stress and decreased Na-K-ATPase and pulse Ox levels were significantly attenuated (P < .05) by berberine. It also significantly downregulated (P < .05) neural tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 messenger RNA (mRNA), and protein expressions both. Streptozotocin-induced downregulated mRNA expressions of brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF-1), and peroxisome proliferator-activated receptors-γ (PPAR-γ) in sciatic nerve were significantly upregulated (P < .05) by berberine. Western blot analysis revealed that STZ-induced alterations in adenosine monophosphate protein kinase (AMPK; Thr-172) and protein phosphatase 2C-α protein expressions in dorsal root ganglia were inhibited by berberine. It also attenuated histological and ultrastructural alterations induced in sciatic nerve by STZ. In conclusion, berberine exerts its neuroprotective effect against n-STZ-induced diabetic peripheral neuropathy via modulation of pro-inflammatory cytokines (TNF α, IL-1β, and IL-6), oxido-nitrosative stress, BDNF, IGF-1, PPAR-γ, and AMPK expression to ameliorate impaired allodynia, hyperalgesia, and nerve conduction velocity during T2DM. SAGE Publications 2019-07-16 /pmc/articles/PMC6636227/ /pubmed/31360147 http://dx.doi.org/10.1177/1559325819862449 Text en © The Author(s) 2019 http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Article
Zhou, Guangju
Yan, Mingzhu
Guo, Gang
Tong, Nanwei
Ameliorative Effect of Berberine on Neonatally Induced Type 2 Diabetic Neuropathy via Modulation of BDNF, IGF-1, PPAR-γ, and AMPK Expressions
title Ameliorative Effect of Berberine on Neonatally Induced Type 2 Diabetic Neuropathy via Modulation of BDNF, IGF-1, PPAR-γ, and AMPK Expressions
title_full Ameliorative Effect of Berberine on Neonatally Induced Type 2 Diabetic Neuropathy via Modulation of BDNF, IGF-1, PPAR-γ, and AMPK Expressions
title_fullStr Ameliorative Effect of Berberine on Neonatally Induced Type 2 Diabetic Neuropathy via Modulation of BDNF, IGF-1, PPAR-γ, and AMPK Expressions
title_full_unstemmed Ameliorative Effect of Berberine on Neonatally Induced Type 2 Diabetic Neuropathy via Modulation of BDNF, IGF-1, PPAR-γ, and AMPK Expressions
title_short Ameliorative Effect of Berberine on Neonatally Induced Type 2 Diabetic Neuropathy via Modulation of BDNF, IGF-1, PPAR-γ, and AMPK Expressions
title_sort ameliorative effect of berberine on neonatally induced type 2 diabetic neuropathy via modulation of bdnf, igf-1, ppar-γ, and ampk expressions
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636227/
https://www.ncbi.nlm.nih.gov/pubmed/31360147
http://dx.doi.org/10.1177/1559325819862449
work_keys_str_mv AT zhouguangju ameliorativeeffectofberberineonneonatallyinducedtype2diabeticneuropathyviamodulationofbdnfigf1ppargandampkexpressions
AT yanmingzhu ameliorativeeffectofberberineonneonatallyinducedtype2diabeticneuropathyviamodulationofbdnfigf1ppargandampkexpressions
AT guogang ameliorativeeffectofberberineonneonatallyinducedtype2diabeticneuropathyviamodulationofbdnfigf1ppargandampkexpressions
AT tongnanwei ameliorativeeffectofberberineonneonatallyinducedtype2diabeticneuropathyviamodulationofbdnfigf1ppargandampkexpressions