Cargando…
Identifying Imaging Markers for Predicting Cognitive Assessments Using Wasserstein Distances Based Matrix Regression
Alzheimer's disease (AD) is a severe type of neurodegeneration which worsens human memory, thinking and cognition along a temporal continuum. How to identify the informative phenotypic neuroimaging markers and accurately predict cognitive assessment are crucial for early detection and diagnosis...
Autores principales: | Yan, Jiexi, Deng, Cheng, Luo, Lei, Wang, Xiaoqian, Yao, Xiaohui, Shen, Li, Huang, Heng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636330/ https://www.ncbi.nlm.nih.gov/pubmed/31354405 http://dx.doi.org/10.3389/fnins.2019.00668 |
Ejemplares similares
-
EEG Signal Reconstruction Using a Generative Adversarial Network With Wasserstein Distance and Temporal-Spatial-Frequency Loss
por: Luo, Tian-jian, et al.
Publicado: (2020) -
Correcting nuisance variation using Wasserstein distance
por: Tabak, Gil, et al.
Publicado: (2020) -
Proxying credit curves via Wasserstein distances
por: Michielon, Matteo, et al.
Publicado: (2022) -
Wasserstein Distance-Based Deep Leakage from Gradients
por: Wang, Zifan, et al.
Publicado: (2023) -
Probability Forecast Combination via Entropy Regularized Wasserstein Distance
por: Cumings-Menon, Ryan, et al.
Publicado: (2020)