Cargando…
Brain Lesion Segmentation Based on Joint Constraints of Low-Rank Representation and Sparse Representation
The segmentation of brain lesions from a brain magnetic resonance (MR) image is of great significance for the clinical diagnosis and follow-up treatment. An automatic segmentation method for brain lesions is proposed based on the low-rank representation (LRR) and the sparse representation (SR) theor...
Autores principales: | Ge, Ting, Mu, Ning, Zhan, Tianming, Chen, Zhi, Gao, Wanrong, Mu, Shanxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636501/ https://www.ncbi.nlm.nih.gov/pubmed/31354803 http://dx.doi.org/10.1155/2019/9378014 |
Ejemplares similares
-
Optimal Superpixel Kernel-Based Kernel Low-Rank and Sparsity Representation for Brain Tumour Segmentation
por: Ge, Ting, et al.
Publicado: (2022) -
Low-Rank and Eigenface Based Sparse Representation for Face Recognition
por: Hou, Yi-Fu, et al.
Publicado: (2014) -
Sparse Representation for Tumor Classification Based on Feature Extraction Using Latent Low-Rank Representation
por: Gan, Bin, et al.
Publicado: (2014) -
Multi-cancer samples clustering via graph regularized low-rank representation method under sparse and symmetric constraints
por: Wang, Juan, et al.
Publicado: (2019) -
Correction: Low-Rank and Eigenface Based Sparse Representation for Face Recognition
Publicado: (2015)