Cargando…
Machine Learning for Haptics: Inferring Multi-Contact Stimulation From Sparse Sensor Configuration
Robust haptic sensation systems are essential for obtaining dexterous robots. Currently, we have solutions for small surface areas, such as fingers, but affordable and robust techniques for covering large areas of an arbitrary 3D surface are still missing. Here, we introduce a general machine learni...
Autores principales: | Sun, Huanbo, Martius, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636604/ https://www.ncbi.nlm.nih.gov/pubmed/31354467 http://dx.doi.org/10.3389/fnbot.2019.00051 |
Ejemplares similares
-
Haptic Spatial Configuration Learning in Deaf and Hearing Individuals
por: van Dijk, Rick, et al.
Publicado: (2013) -
Unsupervised learning of haptic material properties
por: Metzger, Anna, et al.
Publicado: (2022) -
EEG-based biomarkers for optimizing deep brain stimulation contact configuration in Parkinson’s disease
por: Peeters, Jana, et al.
Publicado: (2023) -
Learning to Predict Perceptual Distributions of Haptic Adjectives
por: Richardson, Benjamin A., et al.
Publicado: (2020) -
BitBrain and Sparse Binary Coincidence (SBC) memories: Fast, robust learning and inference for neuromorphic architectures
por: Hopkins, Michael, et al.
Publicado: (2023)