Cargando…
Application of deep learning (3-dimensional convolutional neural network) for the prediction of pathological invasiveness in lung adenocarcinoma: A preliminary study
To compare results for radiological prediction of pathological invasiveness in lung adenocarcinoma between radiologists and a deep learning (DL) system. Ninety patients (50 men, 40 women; mean age, 66 years; range, 40–88 years) who underwent pre-operative chest computed tomography (CT) with 0.625-mm...
Autores principales: | Yanagawa, Masahiro, Niioka, Hirohiko, Hata, Akinori, Kikuchi, Noriko, Honda, Osamu, Kurakami, Hiroyuki, Morii, Eiichi, Noguchi, Masayuki, Watanabe, Yoshiyuki, Miyake, Jun, Tomiyama, Noriyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636940/ https://www.ncbi.nlm.nih.gov/pubmed/31232960 http://dx.doi.org/10.1097/MD.0000000000016119 |
Ejemplares similares
-
Radiological prediction of tumor invasiveness of lung adenocarcinoma on thin-section CT
por: Yanagawa, Masahiro, et al.
Publicado: (2017) -
Subjective and objective comparisons of image quality between ultra-high-resolution CT and conventional area detector CT in phantoms and cadaveric human lungs
por: Yanagawa, Masahiro, et al.
Publicado: (2018) -
Ultra-low-dose chest computed tomography for interstitial lung disease using model-based iterative reconstruction with or without the lung setting
por: Hata, Akinori, et al.
Publicado: (2019) -
The effect of the reconstruction algorithm for the pulmonary nodule detection under the metal artifact caused by a pacemaker
por: Kikuchi, Noriko, et al.
Publicado: (2020) -
Influence of field of view size on image quality: ultra-high-resolution CT vs. conventional high-resolution CT
por: Miyata, Tomo, et al.
Publicado: (2020)