Cargando…

Chlorantraniliprole against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): From biochemical/physiological to demographic responses

Agrotis ipsilon (Lepidoptera: Noctuidae) is a major underground pest that damages many agricultural crops in China and other countries. A diet-incorporation-based bioassay was conducted to evaluate the sublethal effects of the novel anthranilic diamide chlorantraniliprole on the nutritional physiolo...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Falin, Sun, Shiang, Tan, Haili, Sun, Xiao, Qin, Chao, Ji, Shoumin, Li, Xiangdong, Zhang, Jiwang, Jiang, Xingyin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637144/
https://www.ncbi.nlm.nih.gov/pubmed/31316142
http://dx.doi.org/10.1038/s41598-019-46915-0
Descripción
Sumario:Agrotis ipsilon (Lepidoptera: Noctuidae) is a major underground pest that damages many agricultural crops in China and other countries. A diet-incorporation-based bioassay was conducted to evaluate the sublethal effects of the novel anthranilic diamide chlorantraniliprole on the nutritional physiology, enzymatic properties and population parameters of this cutworm. Chlorantraniliprole exhibited signs of active toxicity against third instar larvae of A. ipsilon, and the LC(50) was 0.187 μg.g(−1) of artificial diet after treatment for 72 h. The development time of the larval, pupal and adult stages was significantly affected after chlorantraniliprole exposure, compared to the control treatment. Relative to the control treatment, chlorantraniliprole decreased pupal and adult emergence rates, fecundity and fertility and increased the proportions of developmental deformities, the adult preoviposition period (APOP) and the total preoviposition period (TPOP). Furthermore, compared to those treated with the control, A. ipsilon larvae treated with low doses of chlorantraniliprole decreased food utilization and nutrient content (protein, lipid, carbohydrate, trehalose), showed lower pupal weights and growth rates. Compared with the control treatment, chlorantraniliprole significantly reduced digestive enzyme activities and observably increased detoxifying and protective enzyme activities and hormone titers. Importantly, these chlorantraniliprole-induced changes affected life table parameters of the cutworm. These results suggest that chlorantraniliprole at low concentrations can impair A. ipsilon development duration, normal food consumption and digestion process, enzymatic properties, hormone levels, fecundity and population levels. Chlorantraniliprole exhibit the potential to be exploited as a control strategy for this cutworm.