Cargando…
Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data
Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply the...
Autores principales: | Romagnoni, Alberto, Jégou, Simon, Van Steen, Kristel, Wainrib, Gilles, Hugot, Jean-Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637191/ https://www.ncbi.nlm.nih.gov/pubmed/31316157 http://dx.doi.org/10.1038/s41598-019-46649-z |
Ejemplares similares
-
Network Modeling of Crohn’s Disease Incidence
por: Victor, Jean-Marc, et al.
Publicado: (2016) -
Molecular Reclassification of Crohn’s Disease: A Cautionary Note on Population Stratification
por: Maus, Bärbel, et al.
Publicado: (2013) -
Genotype/Phenotype Analyses for 53 Crohn’s Disease Associated Genetic Polymorphisms
por: Jung, Camille, et al.
Publicado: (2012) -
A deep learning model to predict RNA-Seq expression of tumours from whole slide images
por: Schmauch, Benoît, et al.
Publicado: (2020) -
Multiscale analysis of slow-fast neuronal learning models with noise
por: Galtier, Mathieu, et al.
Publicado: (2012)