Cargando…
Dynamic Bayesian network in infectious diseases surveillance: a simulation study
The surveillance of infectious diseases relies on the identification of dynamic relations between the infectious diseases and corresponding influencing factors. However, the identification task confronts with two practical challenges: small sample size and delayed effect. To overcome both challenges...
Autores principales: | Zhang, Tao, Ma, Yue, Xiao, Xiong, Lin, Yun, Zhang, Xingyu, Yin, Fei, Li, Xiaosong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637193/ https://www.ncbi.nlm.nih.gov/pubmed/31316113 http://dx.doi.org/10.1038/s41598-019-46737-0 |
Ejemplares similares
-
Using the maximum clustering heterogeneous set-proportion to select the maximum window size for the spatial scan statistic
por: Wang, Wei, et al.
Publicado: (2020) -
Evaluation of Bayesian spatiotemporal infectious disease models for prospective surveillance analysis
por: Kim, Joanne, et al.
Publicado: (2023) -
Applications and Comparisons of Four Time Series Models in Epidemiological Surveillance Data
por: Zhang, Xingyu, et al.
Publicado: (2014) -
Study of surveillance data for class B notifiable disease in China from 2005 to 2014
por: Zhang, Xingyu, et al.
Publicado: (2016) -
International Circumpolar Surveillance, An Arctic Network for the Surveillance of Infectious Diseases
por: Parkinson, Alan J., et al.
Publicado: (2008)