Cargando…
Self-Weighted Multi-Kernel Multi-Label Learning for Potential miRNA-Disease Association Prediction
Researchers have realized that microRNAs (miRNAs) play significant roles in the pathogenesis of various diseases. Although many computational models have been proposed to predict the associations between miRNAs and diseases, prediction performance could still be improved. In this paper, we propose a...
Autores principales: | Pan, Zhenxia, Zhang, Huaxiang, Liang, Cheng, Li, Guanghui, Xiao, Qiu, Ding, Pingjian, Luo, Jiawei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637211/ https://www.ncbi.nlm.nih.gov/pubmed/31319245 http://dx.doi.org/10.1016/j.omtn.2019.06.014 |
Ejemplares similares
-
A path-based measurement for human miRNA functional similarities using miRNA-disease associations
por: Ding, Pingjian, et al.
Publicado: (2016) -
Adaptive multi-view multi-label learning for identifying disease-associated candidate miRNAs
por: Liang, Cheng, et al.
Publicado: (2019) -
A Meta-Path-Based Prediction Method for Human miRNA-Target Association
por: Luo, Jiawei, et al.
Publicado: (2016) -
Multi-task learning for predicting synergistic drug combinations based on auto-encoding multi-relational graphs
por: Shan, Wenyu, et al.
Publicado: (2023) -
Multi-Label Multi-Kernel Transfer Learning for Human Protein Subcellular Localization
por: Mei, Suyu
Publicado: (2012)