Cargando…

Continuous chest compressions with a simultaneous triggered ventilator in the Munich Emergency Medical Services: a case series

Background: Mechanical chest compression devices are commonly used providing a constant force and frequency of chest compression during cardiopulmonary resuscitation. However, there are currently no recommendations on ventilation during cardiopulmonary resuscitation with a mechanical chest compressi...

Descripción completa

Detalles Bibliográficos
Autores principales: Schaller, Stefan J., Altmann, Sonja, Unsworth, Annalise, Schneider, Gerhard, Bogner-Flatz, Viktoria, Paul, Thomas, Hoppmann, Petra, Kanz, Karl-Georg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: German Medical Science GMS Publishing House 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637291/
https://www.ncbi.nlm.nih.gov/pubmed/31354398
http://dx.doi.org/10.3205/000272
Descripción
Sumario:Background: Mechanical chest compression devices are commonly used providing a constant force and frequency of chest compression during cardiopulmonary resuscitation. However, there are currently no recommendations on ventilation during cardiopulmonary resuscitation with a mechanical chest compression device using continuous mode. An effective method for ventilation in such scenarios might be a triggered oxygen-powered resuscitator. Methods: We report seven cardiopulmonary resuscitation cases from the Munich Emergency Medical Service where mechanical chest compression devices in continuous mode were used with an oxygen-powered resuscitator. In each case, the resuscitator (Oxylator(®)) was running in automatic mode delivering a breath during the decompression phase of the chest compressions at a frequency of 100 per minute. End-tidal carbon dioxide and pulse oximetry were measured. Additional data was collected from the resuscitation protocol of each patient. Results: End-tidal carbon dioxide was available in all cases while oxygen saturation only in four. Five patients had a return of spontaneous circulation. Based on the end-tidal carbon dioxide values of each of the cases, the resuscitator did not seem to cause hyperventilation and suggests that good-quality cardiopulmonary resuscitation was delivered. Conclusions: Continuous chest compressions using a mechanical chest compression device and simultaneous synchronized ventilation using an oxygen-powered resuscitator in an automatic triggering mode might be feasible during cardiopulmonary resuscitation.