Cargando…
Increased wave action promotes muscle performance but increasing temperatures cause a tenacity–endurance trade-off in intertidal snails (Nerita atramentosa)
Concurrent increases in wave action and sea surface temperatures increase the physical impact on intertidal organisms and affect their physiological capacity to respond to that impact. Our aim was to determine whether wave exposure altered muscle function in intertidal snails (Nerita atramentosa) an...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637719/ https://www.ncbi.nlm.nih.gov/pubmed/31333844 http://dx.doi.org/10.1093/conphys/coz039 |
Sumario: | Concurrent increases in wave action and sea surface temperatures increase the physical impact on intertidal organisms and affect their physiological capacity to respond to that impact. Our aim was to determine whether wave exposure altered muscle function in intertidal snails (Nerita atramentosa) and whether responses to wave action and temperature are plastic, leading to compensation for altered environmental conditions. We show that field snails from exposed shores had greater endurance and vertical tenacity than snails from matched protected shores (n = 5 pairs of shores). There were no differences in muscle metabolic capacities (strombine/lactate dehydrogenase, citrate synthase and cytochrome c oxidase activities) between shore types. Maximum stress (force/foot area) produced by isolated foot muscle did not differ between shore types, but foot muscle from snails on exposed shores had greater endurance. A laboratory experiment showed that vertical tenacity was greater in animals acclimated for 3 weeks to cool winter temperatures (15 C) compared to summer temperatures (25 C), but endurance was greater in snails acclimated to 25°C. Acclimation to water flow that mimicked wave action in the field increased vertical tenacity but decreased endurance. Our data show that increased wave action elicits a training effect on muscle, but that increasing sea surface temperature can cause a trade-off between tenacity and endurance. Ocean warming would negate the beneficial increase in tenacity that could render snails more resistant to acute impacts of wave action, while promoting longer term resistance to dislodgment by waves. |
---|