Cargando…
Twitter mining using semi-supervised classification for relevance filtering in syndromic surveillance
We investigate the use of Twitter data to deliver signals for syndromic surveillance in order to assess its ability to augment existing syndromic surveillance efforts and give a better understanding of symptomatic people who do not seek healthcare advice directly. We focus on a specific syndrome—ast...
Autores principales: | Edo-Osagie, Oduwa, Smith, Gillian, Lake, Iain, Edeghere, Obaghe, De La Iglesia, Beatriz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638773/ https://www.ncbi.nlm.nih.gov/pubmed/31318885 http://dx.doi.org/10.1371/journal.pone.0210689 |
Ejemplares similares
-
A scoping review of the use of Twitter for public health research
por: Edo-Osagie, Oduwa, et al.
Publicado: (2020) -
Syndromic surveillance: two decades experience of sustainable systems – its people not just data!
por: Smith, Gillian E., et al.
Publicado: (2019) -
What value can Google search data add to existing syndromic
surveillance systems?
por: Green, Helen K., et al.
Publicado: (2018) -
Evaluation of the National Notifiable Diseases Surveillance System for Dengue Fever in Taiwan, 2010–2012
por: McKerr, Caoimhe, et al.
Publicado: (2015) -
What did Syndromic Surveillance Show During London 2012? Lessons for
Mass Gatherings
por: Todkill, Dan, et al.
Publicado: (2015)