Cargando…

Highly efficient preparation of active S-phenyl-L-cysteine with tryptophan synthase using a chemoenzymatic method

BACKGROUND: S-Phenyl-L-cysteine is regarded as having potential applicability as an antiretroviral/protease inhibitor for human immunodeficiency virus (HIV). In the present study, optically active S-phenyl-L-cysteine was prepared in a highly efficient manner from inexpensive bromobenzene using trypt...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Lisheng, Zhang, Xingtao, Gao, Guizhen, Yue, Sun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6639955/
https://www.ncbi.nlm.nih.gov/pubmed/31319821
http://dx.doi.org/10.1186/s12896-019-0538-2
Descripción
Sumario:BACKGROUND: S-Phenyl-L-cysteine is regarded as having potential applicability as an antiretroviral/protease inhibitor for human immunodeficiency virus (HIV). In the present study, optically active S-phenyl-L-cysteine was prepared in a highly efficient manner from inexpensive bromobenzene using tryptophan synthase through a chemoenzymatic method. RESULTS: The chemoenzymatic method used a four-step reaction sequence. The process started with the reaction of magnesium and bromobenzene, followed by a Grignard reaction, and then hydrolysis and enzymatic synthesis using tryptophan synthase. Through this approach, S-phenyl-L-cysteine was chemoenzymatically synthesized using tryptophan synthase from thiophenol and L-serine as the starting material. CONCLUSIONS: High-purity, optically active S-phenyl-L-cysteine was efficiently and inexpensively obtained in a total yield of 81.3% (> 99.9% purity).