Cargando…
Analysis of Self-Incompatibility and Genetic Diversity in Diploid and Hexaploid Plum Genotypes
During the last decade, S-genotyping has been extensively investigated in fruit tree crops such as those belonging to the Prunus genus, including plums. In plums, S-allele typing has been largely studied in diploid species but works are scarcer in polyploid species due to the complexity of the polyp...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640205/ https://www.ncbi.nlm.nih.gov/pubmed/31354768 http://dx.doi.org/10.3389/fpls.2019.00896 |
_version_ | 1783436601647431680 |
---|---|
author | Abdallah, Donia Baraket, Ghada Perez, Veronica Ben Mustapha, Sana Salhi-Hannachi, Amel Hormaza, Jose I. |
author_facet | Abdallah, Donia Baraket, Ghada Perez, Veronica Ben Mustapha, Sana Salhi-Hannachi, Amel Hormaza, Jose I. |
author_sort | Abdallah, Donia |
collection | PubMed |
description | During the last decade, S-genotyping has been extensively investigated in fruit tree crops such as those belonging to the Prunus genus, including plums. In plums, S-allele typing has been largely studied in diploid species but works are scarcer in polyploid species due to the complexity of the polyploid genome. This study was conducted in order to analyze the S-genotypes of 30 diploid P. salicina, 17 of them reported here for the first time, and 29 hexaploid plums (24 of P. domestica and 5 of P. insititia). PCR analysis allowed identifying nine S-alleles in the P. salicina samples allocating the 30 accessions in 16 incompatibility groups, two of them identified here for the first time. In addition, pollen tube growth was studied in self-pollinated flowers of 17 Tunisian P. salicina under the microscope. In 16 samples, including one carrying the Se allele, which has been correlated with self-compatibility, the pollen tubes were arrested in the style. Only in one cultivar (“Bedri”), the pollen tubes reached the base of the style. Twelve S-alleles were identified in the 24 P. domestica and 5 P. insititia accessions, assigning accessions in 16 S-genotypes. S-genotyping results were combined with nine SSR loci to analyze genetic diversity. Results showed a close genetic relationship between P. domestica and P. salicina and between P. domestica and P. insititia corroborating that S-locus genotyping is suitable for molecular fingerprinting in diploid and polyploid Prunus species. |
format | Online Article Text |
id | pubmed-6640205 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-66402052019-07-26 Analysis of Self-Incompatibility and Genetic Diversity in Diploid and Hexaploid Plum Genotypes Abdallah, Donia Baraket, Ghada Perez, Veronica Ben Mustapha, Sana Salhi-Hannachi, Amel Hormaza, Jose I. Front Plant Sci Plant Science During the last decade, S-genotyping has been extensively investigated in fruit tree crops such as those belonging to the Prunus genus, including plums. In plums, S-allele typing has been largely studied in diploid species but works are scarcer in polyploid species due to the complexity of the polyploid genome. This study was conducted in order to analyze the S-genotypes of 30 diploid P. salicina, 17 of them reported here for the first time, and 29 hexaploid plums (24 of P. domestica and 5 of P. insititia). PCR analysis allowed identifying nine S-alleles in the P. salicina samples allocating the 30 accessions in 16 incompatibility groups, two of them identified here for the first time. In addition, pollen tube growth was studied in self-pollinated flowers of 17 Tunisian P. salicina under the microscope. In 16 samples, including one carrying the Se allele, which has been correlated with self-compatibility, the pollen tubes were arrested in the style. Only in one cultivar (“Bedri”), the pollen tubes reached the base of the style. Twelve S-alleles were identified in the 24 P. domestica and 5 P. insititia accessions, assigning accessions in 16 S-genotypes. S-genotyping results were combined with nine SSR loci to analyze genetic diversity. Results showed a close genetic relationship between P. domestica and P. salicina and between P. domestica and P. insititia corroborating that S-locus genotyping is suitable for molecular fingerprinting in diploid and polyploid Prunus species. Frontiers Media S.A. 2019-07-12 /pmc/articles/PMC6640205/ /pubmed/31354768 http://dx.doi.org/10.3389/fpls.2019.00896 Text en Copyright © 2019 Abdallah, Baraket, Perez, Ben Mustapha, Salhi-Hannachi and Hormaza. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Abdallah, Donia Baraket, Ghada Perez, Veronica Ben Mustapha, Sana Salhi-Hannachi, Amel Hormaza, Jose I. Analysis of Self-Incompatibility and Genetic Diversity in Diploid and Hexaploid Plum Genotypes |
title | Analysis of Self-Incompatibility and Genetic Diversity in Diploid and Hexaploid Plum Genotypes |
title_full | Analysis of Self-Incompatibility and Genetic Diversity in Diploid and Hexaploid Plum Genotypes |
title_fullStr | Analysis of Self-Incompatibility and Genetic Diversity in Diploid and Hexaploid Plum Genotypes |
title_full_unstemmed | Analysis of Self-Incompatibility and Genetic Diversity in Diploid and Hexaploid Plum Genotypes |
title_short | Analysis of Self-Incompatibility and Genetic Diversity in Diploid and Hexaploid Plum Genotypes |
title_sort | analysis of self-incompatibility and genetic diversity in diploid and hexaploid plum genotypes |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640205/ https://www.ncbi.nlm.nih.gov/pubmed/31354768 http://dx.doi.org/10.3389/fpls.2019.00896 |
work_keys_str_mv | AT abdallahdonia analysisofselfincompatibilityandgeneticdiversityindiploidandhexaploidplumgenotypes AT baraketghada analysisofselfincompatibilityandgeneticdiversityindiploidandhexaploidplumgenotypes AT perezveronica analysisofselfincompatibilityandgeneticdiversityindiploidandhexaploidplumgenotypes AT benmustaphasana analysisofselfincompatibilityandgeneticdiversityindiploidandhexaploidplumgenotypes AT salhihannachiamel analysisofselfincompatibilityandgeneticdiversityindiploidandhexaploidplumgenotypes AT hormazajosei analysisofselfincompatibilityandgeneticdiversityindiploidandhexaploidplumgenotypes |