Cargando…
SpykeTorch: Efficient Simulation of Convolutional Spiking Neural Networks With at Most One Spike per Neuron
Application of deep convolutional spiking neural networks (SNNs) to artificial intelligence (AI) tasks has recently gained a lot of interest since SNNs are hardware-friendly and energy-efficient. Unlike the non-spiking counterparts, most of the existing SNN simulation frameworks are not practically...
Autores principales: | Mozafari, Milad, Ganjtabesh, Mohammad, Nowzari-Dalini, Abbas, Masquelier, Timothée |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640212/ https://www.ncbi.nlm.nih.gov/pubmed/31354403 http://dx.doi.org/10.3389/fnins.2019.00625 |
Ejemplares similares
-
Improving protein complex prediction by reconstructing a high-confidence protein-protein interaction network of Escherichia coli from different physical interaction data sources
por: Taghipour, Shirin, et al.
Publicado: (2017) -
An Evidence-Based Combining Classifier for Brain Signal Analysis
por: Kheradpisheh, Saeed Reza, et al.
Publicado: (2014) -
Inverse RNA folding solution based on multi-objective genetic algorithm and Gibbs sampling method
por: Ganjtabesh, M, et al.
Publicado: (2013) -
Optimal spike pattern v.s. noise separation by neurons equipped with STDP
por: Masquelier, Timothée, et al.
Publicado: (2013) -
Spike Timing Dependent Plasticity Finds the Start of Repeating Patterns in Continuous Spike Trains
por: Masquelier, Timothée, et al.
Publicado: (2008)