Cargando…
Chiral Imidazolium-Functionalized Au Nanoparticles: Reversible Aggregation and Molecular Recognition
[Image: see text] Gold nanoparticles (AuNPs) stabilized by imidazolium salts derived from amino acids [glycine (1), rac-alanine (2), l-phenylalanine (3), and rac-methionine (4)] were prepared. The AuNPs were stabilized the most by 4, which kept the particles dispersed in water for months at pH >...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640785/ https://www.ncbi.nlm.nih.gov/pubmed/31457170 http://dx.doi.org/10.1021/acsomega.6b00141 |
Sumario: | [Image: see text] Gold nanoparticles (AuNPs) stabilized by imidazolium salts derived from amino acids [glycine (1), rac-alanine (2), l-phenylalanine (3), and rac-methionine (4)] were prepared. The AuNPs were stabilized the most by 4, which kept the particles dispersed in water for months at pH > 5.5. These AuNPs exhibited a well-defined absorption band at 517 nm and had an average particle size of 11.21 ± 0.07 nm. The 4-AuNPs were reversibly aggregated by controlling the pH of the solution. Chiral R,R-4-AuNPs and S,S-4-AuNPs were synthesized, and the chiral environment on the nanoparticle surface was confirmed using circular dichroism; these nanoparticles exhibited a molecular recognition of chiral substrates. Furthermore, they showed potential for separating racemic mixtures when supported on a layered double hydroxide. |
---|