Cargando…
Versatile Manganese Catalysis for the Synthesis of Poly(silylether)s from Diols and Dicarbonyls with Hydrosilanes
[Image: see text] Poly(silylether)s are interesting materials because of their degradation property under hydrolytic conditions and have been prepared via hydrosilylation polymerization from dicarbonyl and hydrosilanes, and via dehydrogenative cross-coupling of diols and hydrosilanes under catalytic...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640981/ https://www.ncbi.nlm.nih.gov/pubmed/31457456 http://dx.doi.org/10.1021/acsomega.6b00538 |
Sumario: | [Image: see text] Poly(silylether)s are interesting materials because of their degradation property under hydrolytic conditions and have been prepared via hydrosilylation polymerization from dicarbonyl and hydrosilanes, and via dehydrogenative cross-coupling of diols and hydrosilanes under catalytic conditions. Here, we present a manganese–salen compound based on an inexpensive and nontoxic metal that could effectively catalyze both polymerization reactions with hydrosilane. A series of poly(silylether)s containing various aliphatic and aromatic backbones have been synthesized from diol and dicarbonyl substrates. Moderate to high yields of polymers with number-average molecular weights up to 15 kg/mol are obtained. Because of the dual activity of the manganese catalyst, unsymmetrical substrates with mixed functional groups, such as p-hydroxybenzaldehyde, p-hydroxy benzylalcohol, and 3-(4-hydroxyphenyl)-1-propanol, have been employed to afford poly(silylether)s with multiple silicon connectivity in the main chain. |
---|