Cargando…

Synthesis of a Degradable High-Performance Epoxy-Ended Hyperbranched Polyester

[Image: see text] Degradation and recycling of cured thermosetting epoxy resins are major challenges to the industry. Here, a low-viscosity, degradable epoxy-ended hyperbranched polyester (DEHP) is synthesized by a reaction between epichlorohydrin and a carboxyl-ended hyperbranched polyester (DCHP)...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Qian, Liang, Yeyun, Cheng, Juan, Chen, Sufang, Zhang, Aiqing, Miao, Menghe, Zhang, Daohong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640995/
https://www.ncbi.nlm.nih.gov/pubmed/31457508
http://dx.doi.org/10.1021/acsomega.7b00132
Descripción
Sumario:[Image: see text] Degradation and recycling of cured thermosetting epoxy resins are major challenges to the industry. Here, a low-viscosity, degradable epoxy-ended hyperbranched polyester (DEHP) is synthesized by a reaction between epichlorohydrin and a carboxyl-ended hyperbranched polyester (DCHP) obtained from an esterification between citric acid and maleic anhydride. The chemical structures of DCHP and DEHP were characterized by Fourier transform infrared and (1)H NMR. DEHP has a positive effect on reinforcing and toughening of the diglycidyl ether of bisphenol-A (DGEBA). With an increase in the content and molecular weight of DEHP, the mechanical performances of the cured DEHP/DGEBA composites, including the tensile, flexural, and impact strengths, increase first and then decrease. The improvements on the tensile, flexural, and impact strengths were 34.2–43.4%, 35.6–48.1%, and 117.9–137.8%, respectively. Moreover, the DEHP also promotes degradation of the cured DEHP/DGEBA composites. The degree of degradation of the cured DEHP/DGEBA composites increases with an increase of the DEHP content and molecular weight. The composites containing 12 wt % DEHP can be degraded completely in only about 2 h at about 90 °C, compared with the degradation degree (35%) of cured DGEBA, indicating good degradation and recycling properties of the DEHP.