Cargando…
Elevated Concentrations of 4-Bromobiphenyl and 1,3,5-Tribromobenzene Found in Deep Water of Lake Geneva Based on GC×GC-ENCI-TOFMS and GC×GC-μECD
[Image: see text] We quantified the concentrations of two little-studied brominated pollutants, 1,3,5-tribromobenzene (TBB) and 4-bromobiphenyl (4BBP), in the deep water column and sediments of Lake Geneva. We found aqueous concentrations of 625 ± 68 pg L(–1) for TBB and 668 ± 86 pg L(–1) for 4BBP o...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641002/ https://www.ncbi.nlm.nih.gov/pubmed/31457461 http://dx.doi.org/10.1021/acsomega.6b00440 |
Sumario: | [Image: see text] We quantified the concentrations of two little-studied brominated pollutants, 1,3,5-tribromobenzene (TBB) and 4-bromobiphenyl (4BBP), in the deep water column and sediments of Lake Geneva. We found aqueous concentrations of 625 ± 68 pg L(–1) for TBB and 668 ± 86 pg L(–1) for 4BBP over a depth range of 70–191.5 m (near-bottom depth), based on duplicate measurements taken at five depths during three separate 1 month sampling periods at our sampling site near Vidy Bay. These levels of TBB and 4BBP were 1 or 2 orders of magnitude higher than the quantified aqueous concentrations of the components of the pentabrominated biphenyl ether technical mixture, which is a flame retardant product that had a high production volume in Europe before 2001. We observed statistically significant vertical concentration trends for both TBB and 2,2′,4,4′,6-pentabromobiphenyl ether in the deep water column, which indicates that transport and/or degradation processes affect these compounds. These measurements were enabled by application of a comprehensive two-dimensional gas chromatograph coupled to an electron capture negative chemical ionization time-of-flight mass spectrometer (GC×GC-ENCI-TOFMS) and to a micro-electron capture detector (GC×GC-μECD). GC×GC-ENCI-TOFMS and GC×GC-μECD were found to be >10× more sensitive toward brominated pollutants than conventional GC×GC-EI-TOFMS (with an electron impact (EI) ionization source), the latter of which had insufficient sensitivity to detect these emerging brominated pollutants in the analyzed samples. GC×GC also enabled the estimation of several environmentally relevant partitioning properties of TBB and 4BBP, further confirming previous evidence that these pollutants are bioaccumulative and have long-range transport potential. |
---|