Cargando…

Amino Acid Analogue-Conjugated BN Nanomaterials in a Solvated Phase: First Principles Study of Topology-Dependent Interactions with a Monolayer and a (5,0) Nanotube

[Image: see text] Using density functional theory and an implicit solvation model, the relationship between the topology of boron nitride (BN) nanomaterials and the protonated/deprotonated states of amino acid analogues is investigated. In the solvated phase, the calculated results show distinct “ph...

Descripción completa

Detalles Bibliográficos
Autores principales: Waters, Kevin, Pandey, Ravindra, Karna, Shashi P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641042/
https://www.ncbi.nlm.nih.gov/pubmed/31457210
http://dx.doi.org/10.1021/acsomega.6b00321
_version_ 1783436690201772032
author Waters, Kevin
Pandey, Ravindra
Karna, Shashi P.
author_facet Waters, Kevin
Pandey, Ravindra
Karna, Shashi P.
author_sort Waters, Kevin
collection PubMed
description [Image: see text] Using density functional theory and an implicit solvation model, the relationship between the topology of boron nitride (BN) nanomaterials and the protonated/deprotonated states of amino acid analogues is investigated. In the solvated phase, the calculated results show distinct “physisorbed versus chemisorbed” conditions for the analogues of arginine (Arg)- and aspartic acid (Asp)-conjugated BN nanomaterials, including a monolayer (ML) and a small-diameter zigzag nanotube (NT). Such a distinction does not depend on the functional groups of amino acids but rather depends on the curvature-induced interactions associated with the tubular configuration. Arg and Asp interact with the BNML to form physisorbed complexes irrespective of the state of the amino acids in the solvated phase. For the NT, Arg and Asp form chemisorbed complexes, and the distinct nature of bonds between the donor electron moieties of N((Arg)) and O((Asp)) and the boron of the tubular surface is revealed by the natural bond orbital analysis; stronger s-type bonds for the deprotonated conjugated complexes and slightly weaker p-type dominated bonds for the protonated conjugated complexes. The interaction of neutral Trp with BN nanomaterials results in physisorbed configurations through π-stacking interactions with the indole ring of the Trp and BN nanomaterials. The calculated results form the basis for a theoretical study of more complex protein macromolecules interacting with nanomaterials under physiological conditions.
format Online
Article
Text
id pubmed-6641042
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-66410422019-08-27 Amino Acid Analogue-Conjugated BN Nanomaterials in a Solvated Phase: First Principles Study of Topology-Dependent Interactions with a Monolayer and a (5,0) Nanotube Waters, Kevin Pandey, Ravindra Karna, Shashi P. ACS Omega [Image: see text] Using density functional theory and an implicit solvation model, the relationship between the topology of boron nitride (BN) nanomaterials and the protonated/deprotonated states of amino acid analogues is investigated. In the solvated phase, the calculated results show distinct “physisorbed versus chemisorbed” conditions for the analogues of arginine (Arg)- and aspartic acid (Asp)-conjugated BN nanomaterials, including a monolayer (ML) and a small-diameter zigzag nanotube (NT). Such a distinction does not depend on the functional groups of amino acids but rather depends on the curvature-induced interactions associated with the tubular configuration. Arg and Asp interact with the BNML to form physisorbed complexes irrespective of the state of the amino acids in the solvated phase. For the NT, Arg and Asp form chemisorbed complexes, and the distinct nature of bonds between the donor electron moieties of N((Arg)) and O((Asp)) and the boron of the tubular surface is revealed by the natural bond orbital analysis; stronger s-type bonds for the deprotonated conjugated complexes and slightly weaker p-type dominated bonds for the protonated conjugated complexes. The interaction of neutral Trp with BN nanomaterials results in physisorbed configurations through π-stacking interactions with the indole ring of the Trp and BN nanomaterials. The calculated results form the basis for a theoretical study of more complex protein macromolecules interacting with nanomaterials under physiological conditions. American Chemical Society 2017-01-09 /pmc/articles/PMC6641042/ /pubmed/31457210 http://dx.doi.org/10.1021/acsomega.6b00321 Text en Copyright © 2017 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Waters, Kevin
Pandey, Ravindra
Karna, Shashi P.
Amino Acid Analogue-Conjugated BN Nanomaterials in a Solvated Phase: First Principles Study of Topology-Dependent Interactions with a Monolayer and a (5,0) Nanotube
title Amino Acid Analogue-Conjugated BN Nanomaterials in a Solvated Phase: First Principles Study of Topology-Dependent Interactions with a Monolayer and a (5,0) Nanotube
title_full Amino Acid Analogue-Conjugated BN Nanomaterials in a Solvated Phase: First Principles Study of Topology-Dependent Interactions with a Monolayer and a (5,0) Nanotube
title_fullStr Amino Acid Analogue-Conjugated BN Nanomaterials in a Solvated Phase: First Principles Study of Topology-Dependent Interactions with a Monolayer and a (5,0) Nanotube
title_full_unstemmed Amino Acid Analogue-Conjugated BN Nanomaterials in a Solvated Phase: First Principles Study of Topology-Dependent Interactions with a Monolayer and a (5,0) Nanotube
title_short Amino Acid Analogue-Conjugated BN Nanomaterials in a Solvated Phase: First Principles Study of Topology-Dependent Interactions with a Monolayer and a (5,0) Nanotube
title_sort amino acid analogue-conjugated bn nanomaterials in a solvated phase: first principles study of topology-dependent interactions with a monolayer and a (5,0) nanotube
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641042/
https://www.ncbi.nlm.nih.gov/pubmed/31457210
http://dx.doi.org/10.1021/acsomega.6b00321
work_keys_str_mv AT waterskevin aminoacidanalogueconjugatedbnnanomaterialsinasolvatedphasefirstprinciplesstudyoftopologydependentinteractionswithamonolayeranda50nanotube
AT pandeyravindra aminoacidanalogueconjugatedbnnanomaterialsinasolvatedphasefirstprinciplesstudyoftopologydependentinteractionswithamonolayeranda50nanotube
AT karnashaship aminoacidanalogueconjugatedbnnanomaterialsinasolvatedphasefirstprinciplesstudyoftopologydependentinteractionswithamonolayeranda50nanotube