Cargando…

Phenolic Activation in Chiral Brønsted Acid-Catalyzed Intramolecular α-Amidoalkylation Reactions for the Synthesis of Fused Isoquinolines

[Image: see text] An organolithium addition–intramolecular α-amidoalkylation sequence on N-phenethylimides has been developed for the synthesis of fused tetrahydroisoquinoline systems using 1,1′-bi-2-naphthol (binol)-derived Brønsted acids. This transformation is the first in which activated benzene...

Descripción completa

Detalles Bibliográficos
Autores principales: Aranzamendi, Eider, Sotomayor, Nuria, Lete, Esther
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641169/
https://www.ncbi.nlm.nih.gov/pubmed/31457610
http://dx.doi.org/10.1021/acsomega.7b00170
Descripción
Sumario:[Image: see text] An organolithium addition–intramolecular α-amidoalkylation sequence on N-phenethylimides has been developed for the synthesis of fused tetrahydroisoquinoline systems using 1,1′-bi-2-naphthol (binol)-derived Brønsted acids. This transformation is the first in which activated benzene derivatives are used as internal nucleophiles, instead of electron-rich heteroaromatics, generating a quaternary stereocenter. Phenolic substitution on the aromatic ring of the phenethylamino moiety and the use of binol-derived N-triflylphosphoramides as catalysts are determinants to achieve reasonable levels of enantioselection, that is, up to 75% enantiomeric excess, in the α-amidoalkylation step. The procedure is complementary to the intermolecular α-amidoalkylation process, as opposite enantiomers are formed, and to the Pictet–Spengler cyclization, which allows the formation of tertiary stereocenters.