Cargando…

Multi-scale modeling of the circadian modulation of learning and memory

We propose a multi-scale model to explain the time-of-day effects on learning and memory. We specifically model the circadian variation of hippocampus (HC) dependent long-term potentiation (LTP), depression (LTD), and the fear conditioning paradigm in amygdala. The model we built has both Goodwin ty...

Descripción completa

Detalles Bibliográficos
Autores principales: S, Shiju, Sriram, K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641212/
https://www.ncbi.nlm.nih.gov/pubmed/31323054
http://dx.doi.org/10.1371/journal.pone.0219915
Descripción
Sumario:We propose a multi-scale model to explain the time-of-day effects on learning and memory. We specifically model the circadian variation of hippocampus (HC) dependent long-term potentiation (LTP), depression (LTD), and the fear conditioning paradigm in amygdala. The model we built has both Goodwin type circadian gene regulatory network (GRN) and the conductance model of Morris-Lecar (ML) type to explain the spontaneous firing patterns (SFR) in suprachiasmatic nucleus (SCN). In the conductance model, we also include N-Methyl-D-aspartic acid receptor (NMDAR) to study the circadian dependent changes in LTP/LTD in hippocampus and include both NMDAR and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) dynamics to explain the circadian modulation of fear conditioning paradigm in memory acquisition, recall, and extinction as seen in amygdala. Our multi-scale model captures the essential dynamics seen in the experiments and strongly supports the circadian time-of-the-day effects on learning and memory.