Cargando…

Random versus Systematic Errors in Reaction Enthalpies Computed Using Semiempirical and Minimal Basis Set Methods

[Image: see text] The connectivity-based hierarchy (CBH) protocol for computing accurate reaction enthalpies developed by Sengupta and Raghavachari is tested for fast ab initio methods (PBEh-3c, HF-3c, and HF/STO-3G), tight-binding density functional theory (DFT) methods (GFN-xTB, DFTB, and DFTB-D3)...

Descripción completa

Detalles Bibliográficos
Autores principales: Kromann, Jimmy C., Welford, Alexander, Christensen, Anders S., Jensen, Jan H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641226/
https://www.ncbi.nlm.nih.gov/pubmed/31458662
http://dx.doi.org/10.1021/acsomega.8b00189
_version_ 1783436732147957760
author Kromann, Jimmy C.
Welford, Alexander
Christensen, Anders S.
Jensen, Jan H.
author_facet Kromann, Jimmy C.
Welford, Alexander
Christensen, Anders S.
Jensen, Jan H.
author_sort Kromann, Jimmy C.
collection PubMed
description [Image: see text] The connectivity-based hierarchy (CBH) protocol for computing accurate reaction enthalpies developed by Sengupta and Raghavachari is tested for fast ab initio methods (PBEh-3c, HF-3c, and HF/STO-3G), tight-binding density functional theory (DFT) methods (GFN-xTB, DFTB, and DFTB-D3), and neglect-of-diatomic-differential-overlap (NDDO)-based semiempirical methods (AM1, PM3, PM6, PM6-DH+, PM6-D2, PM6-D3H+, PM6-D3H4X, PM7, and OM2) using the same set of 25 reactions as in the original study. For the CBH-2 scheme, which reflects the change in the immediate chemical environment of all of the heavy atoms, the respective mean unsigned error relative to G4 for PBEh-3c, HF-3c, HF/STO-3G, GFN-xTB, DFTB-D3, DFTB, PM3, AM1, PM6, PM6-DH+, PM6-D3, PM6-D3H+, PM6-D3H4X, PM7, and OM2 are 1.9, 2.4, 3.0, 3.9, 3.7, 4.5, 4.8, 5.5, 5.4, 5.3, 5,4, 6.5, 5.3, 5.2, and 5.9 kcal/mol, with a single outlier removed for HF-3c, PM6, PM6-DH+, PM6-D3, PM6-D3H4X, and PM7. The increase in accuracy for the NDDO-based methods is relatively modest due to the random errors in predicted heats for formation.
format Online
Article
Text
id pubmed-6641226
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-66412262019-08-27 Random versus Systematic Errors in Reaction Enthalpies Computed Using Semiempirical and Minimal Basis Set Methods Kromann, Jimmy C. Welford, Alexander Christensen, Anders S. Jensen, Jan H. ACS Omega [Image: see text] The connectivity-based hierarchy (CBH) protocol for computing accurate reaction enthalpies developed by Sengupta and Raghavachari is tested for fast ab initio methods (PBEh-3c, HF-3c, and HF/STO-3G), tight-binding density functional theory (DFT) methods (GFN-xTB, DFTB, and DFTB-D3), and neglect-of-diatomic-differential-overlap (NDDO)-based semiempirical methods (AM1, PM3, PM6, PM6-DH+, PM6-D2, PM6-D3H+, PM6-D3H4X, PM7, and OM2) using the same set of 25 reactions as in the original study. For the CBH-2 scheme, which reflects the change in the immediate chemical environment of all of the heavy atoms, the respective mean unsigned error relative to G4 for PBEh-3c, HF-3c, HF/STO-3G, GFN-xTB, DFTB-D3, DFTB, PM3, AM1, PM6, PM6-DH+, PM6-D3, PM6-D3H+, PM6-D3H4X, PM7, and OM2 are 1.9, 2.4, 3.0, 3.9, 3.7, 4.5, 4.8, 5.5, 5.4, 5.3, 5,4, 6.5, 5.3, 5.2, and 5.9 kcal/mol, with a single outlier removed for HF-3c, PM6, PM6-DH+, PM6-D3, PM6-D3H4X, and PM7. The increase in accuracy for the NDDO-based methods is relatively modest due to the random errors in predicted heats for formation. American Chemical Society 2018-04-20 /pmc/articles/PMC6641226/ /pubmed/31458662 http://dx.doi.org/10.1021/acsomega.8b00189 Text en Copyright © 2018 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Kromann, Jimmy C.
Welford, Alexander
Christensen, Anders S.
Jensen, Jan H.
Random versus Systematic Errors in Reaction Enthalpies Computed Using Semiempirical and Minimal Basis Set Methods
title Random versus Systematic Errors in Reaction Enthalpies Computed Using Semiempirical and Minimal Basis Set Methods
title_full Random versus Systematic Errors in Reaction Enthalpies Computed Using Semiempirical and Minimal Basis Set Methods
title_fullStr Random versus Systematic Errors in Reaction Enthalpies Computed Using Semiempirical and Minimal Basis Set Methods
title_full_unstemmed Random versus Systematic Errors in Reaction Enthalpies Computed Using Semiempirical and Minimal Basis Set Methods
title_short Random versus Systematic Errors in Reaction Enthalpies Computed Using Semiempirical and Minimal Basis Set Methods
title_sort random versus systematic errors in reaction enthalpies computed using semiempirical and minimal basis set methods
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641226/
https://www.ncbi.nlm.nih.gov/pubmed/31458662
http://dx.doi.org/10.1021/acsomega.8b00189
work_keys_str_mv AT kromannjimmyc randomversussystematicerrorsinreactionenthalpiescomputedusingsemiempiricalandminimalbasissetmethods
AT welfordalexander randomversussystematicerrorsinreactionenthalpiescomputedusingsemiempiricalandminimalbasissetmethods
AT christensenanderss randomversussystematicerrorsinreactionenthalpiescomputedusingsemiempiricalandminimalbasissetmethods
AT jensenjanh randomversussystematicerrorsinreactionenthalpiescomputedusingsemiempiricalandminimalbasissetmethods