Cargando…

Single-Molecule Nonresonant Wide-Field Surface-Enhanced Raman Scattering from Ferroelectrically Defined Au Nanoparticle Microarrays

[Image: see text] Single-molecule detection by surface-enhanced Raman scattering (SERS) is a powerful spectroscopic technique that is of interest for the sensor development field. An important aspect of optimizing the materials used in SERS-based sensors is the ability to have a high density of “hot...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Shammari, Rusul M., Al-attar, Nebras, Manzo, Michele, Gallo, Katia, Rodriguez, Brian J., Rice, James H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641312/
https://www.ncbi.nlm.nih.gov/pubmed/31458575
http://dx.doi.org/10.1021/acsomega.7b01285
_version_ 1783436752150593536
author Al-Shammari, Rusul M.
Al-attar, Nebras
Manzo, Michele
Gallo, Katia
Rodriguez, Brian J.
Rice, James H.
author_facet Al-Shammari, Rusul M.
Al-attar, Nebras
Manzo, Michele
Gallo, Katia
Rodriguez, Brian J.
Rice, James H.
author_sort Al-Shammari, Rusul M.
collection PubMed
description [Image: see text] Single-molecule detection by surface-enhanced Raman scattering (SERS) is a powerful spectroscopic technique that is of interest for the sensor development field. An important aspect of optimizing the materials used in SERS-based sensors is the ability to have a high density of “hot spots” that enhance the SERS sensitivity to the single-molecule level. Photodeposition of gold (Au) nanoparticles through electric-field-directed self-assembly on a periodically proton-exchanged lithium niobate (PPELN) substrate provides conditions to form well-ordered microscale features consisting of closely packed Au nanoparticles. The resulting Au nanoparticle microstructure arrays (microarrays) are plasmon-active and support nonresonant single-molecule SERS at ultralow concentrations (<10(–9)–10(–13) M) with excitation power densities <1 × 10(–3) W cm(–2) using wide-field imaging. The microarrays offer excellent SERS reproducibility, with an intensity variation of <7.5% across the substrate. As most biomarkers and molecules do not support resonance enhancement, this work demonstrates that PPELN is a suitable template for high-sensitivity, nonresonant sensing applications.
format Online
Article
Text
id pubmed-6641312
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-66413122019-08-27 Single-Molecule Nonresonant Wide-Field Surface-Enhanced Raman Scattering from Ferroelectrically Defined Au Nanoparticle Microarrays Al-Shammari, Rusul M. Al-attar, Nebras Manzo, Michele Gallo, Katia Rodriguez, Brian J. Rice, James H. ACS Omega [Image: see text] Single-molecule detection by surface-enhanced Raman scattering (SERS) is a powerful spectroscopic technique that is of interest for the sensor development field. An important aspect of optimizing the materials used in SERS-based sensors is the ability to have a high density of “hot spots” that enhance the SERS sensitivity to the single-molecule level. Photodeposition of gold (Au) nanoparticles through electric-field-directed self-assembly on a periodically proton-exchanged lithium niobate (PPELN) substrate provides conditions to form well-ordered microscale features consisting of closely packed Au nanoparticles. The resulting Au nanoparticle microstructure arrays (microarrays) are plasmon-active and support nonresonant single-molecule SERS at ultralow concentrations (<10(–9)–10(–13) M) with excitation power densities <1 × 10(–3) W cm(–2) using wide-field imaging. The microarrays offer excellent SERS reproducibility, with an intensity variation of <7.5% across the substrate. As most biomarkers and molecules do not support resonance enhancement, this work demonstrates that PPELN is a suitable template for high-sensitivity, nonresonant sensing applications. American Chemical Society 2018-03-15 /pmc/articles/PMC6641312/ /pubmed/31458575 http://dx.doi.org/10.1021/acsomega.7b01285 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Al-Shammari, Rusul M.
Al-attar, Nebras
Manzo, Michele
Gallo, Katia
Rodriguez, Brian J.
Rice, James H.
Single-Molecule Nonresonant Wide-Field Surface-Enhanced Raman Scattering from Ferroelectrically Defined Au Nanoparticle Microarrays
title Single-Molecule Nonresonant Wide-Field Surface-Enhanced Raman Scattering from Ferroelectrically Defined Au Nanoparticle Microarrays
title_full Single-Molecule Nonresonant Wide-Field Surface-Enhanced Raman Scattering from Ferroelectrically Defined Au Nanoparticle Microarrays
title_fullStr Single-Molecule Nonresonant Wide-Field Surface-Enhanced Raman Scattering from Ferroelectrically Defined Au Nanoparticle Microarrays
title_full_unstemmed Single-Molecule Nonresonant Wide-Field Surface-Enhanced Raman Scattering from Ferroelectrically Defined Au Nanoparticle Microarrays
title_short Single-Molecule Nonresonant Wide-Field Surface-Enhanced Raman Scattering from Ferroelectrically Defined Au Nanoparticle Microarrays
title_sort single-molecule nonresonant wide-field surface-enhanced raman scattering from ferroelectrically defined au nanoparticle microarrays
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641312/
https://www.ncbi.nlm.nih.gov/pubmed/31458575
http://dx.doi.org/10.1021/acsomega.7b01285
work_keys_str_mv AT alshammarirusulm singlemoleculenonresonantwidefieldsurfaceenhancedramanscatteringfromferroelectricallydefinedaunanoparticlemicroarrays
AT alattarnebras singlemoleculenonresonantwidefieldsurfaceenhancedramanscatteringfromferroelectricallydefinedaunanoparticlemicroarrays
AT manzomichele singlemoleculenonresonantwidefieldsurfaceenhancedramanscatteringfromferroelectricallydefinedaunanoparticlemicroarrays
AT gallokatia singlemoleculenonresonantwidefieldsurfaceenhancedramanscatteringfromferroelectricallydefinedaunanoparticlemicroarrays
AT rodriguezbrianj singlemoleculenonresonantwidefieldsurfaceenhancedramanscatteringfromferroelectricallydefinedaunanoparticlemicroarrays
AT ricejamesh singlemoleculenonresonantwidefieldsurfaceenhancedramanscatteringfromferroelectricallydefinedaunanoparticlemicroarrays