Cargando…
Coupled Mutations-Enabled Glycerol Transportation in an Aquaporin Z Mutant
[Image: see text] Aquaporins are transmembrane channel proteins with key function being transportation of water or other small substrates. Escherichia coli Aqp Z transports water molecules only, whereas Glp F is permeable to glycerol. It is intriguing to explore the possibility to induce glycerol pe...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641515/ https://www.ncbi.nlm.nih.gov/pubmed/31458647 http://dx.doi.org/10.1021/acsomega.8b00126 |
_version_ | 1783436799473876992 |
---|---|
author | Ping, Zhi Zhou, Feng Lin, Xin Su, Haibin |
author_facet | Ping, Zhi Zhou, Feng Lin, Xin Su, Haibin |
author_sort | Ping, Zhi |
collection | PubMed |
description | [Image: see text] Aquaporins are transmembrane channel proteins with key function being transportation of water or other small substrates. Escherichia coli Aqp Z transports water molecules only, whereas Glp F is permeable to glycerol. It is intriguing to explore the possibility to induce glycerol permeability in Aqp Z by targeted mutations. The Aqp Z mutants with mutated selectivity filter (SF) residues exhibit poor permeability for both glycerol and water. For addressing the complexity of protein systems, pair correlation information in protein sequence analyses is instructive to identify residues that are coupled by coevolution and motion. In this study, we analyze the correlation between residues and unravel the clustering patterns of coupled residues, beyond SF residues, in aquaglyceroporins (AQGPs). The identified coupled motifs are proposed to be sequenced into aquaporin (Aqp Z) to introduce glycerol permeability. These residues are located in the vicinity of SF region, C-loop, and M6–M7 linkage domain. Significant enlargement of SF pore size of the proposed Aqp Z mutant is observed by an all-atom replica exchange molecular dynamics simulation, which is critical to facilitate considerable glycerol passage as characterized in calculated free-energy landscapes. Clearly, the hidden connections among residues play crucial roles in water/glycerol selectivity. In contrast, single-site mutation-based scheme may even lead to undesirable effects in AQGPs, such as the blocking of water transportation by aromatic π-stacked gate. As demonstrated in this work, the pair correlation analysis guided rational mutagenesis provides a feasible strategy to modulate proteins’ functions. |
format | Online Article Text |
id | pubmed-6641515 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-66415152019-08-27 Coupled Mutations-Enabled Glycerol Transportation in an Aquaporin Z Mutant Ping, Zhi Zhou, Feng Lin, Xin Su, Haibin ACS Omega [Image: see text] Aquaporins are transmembrane channel proteins with key function being transportation of water or other small substrates. Escherichia coli Aqp Z transports water molecules only, whereas Glp F is permeable to glycerol. It is intriguing to explore the possibility to induce glycerol permeability in Aqp Z by targeted mutations. The Aqp Z mutants with mutated selectivity filter (SF) residues exhibit poor permeability for both glycerol and water. For addressing the complexity of protein systems, pair correlation information in protein sequence analyses is instructive to identify residues that are coupled by coevolution and motion. In this study, we analyze the correlation between residues and unravel the clustering patterns of coupled residues, beyond SF residues, in aquaglyceroporins (AQGPs). The identified coupled motifs are proposed to be sequenced into aquaporin (Aqp Z) to introduce glycerol permeability. These residues are located in the vicinity of SF region, C-loop, and M6–M7 linkage domain. Significant enlargement of SF pore size of the proposed Aqp Z mutant is observed by an all-atom replica exchange molecular dynamics simulation, which is critical to facilitate considerable glycerol passage as characterized in calculated free-energy landscapes. Clearly, the hidden connections among residues play crucial roles in water/glycerol selectivity. In contrast, single-site mutation-based scheme may even lead to undesirable effects in AQGPs, such as the blocking of water transportation by aromatic π-stacked gate. As demonstrated in this work, the pair correlation analysis guided rational mutagenesis provides a feasible strategy to modulate proteins’ functions. American Chemical Society 2018-04-12 /pmc/articles/PMC6641515/ /pubmed/31458647 http://dx.doi.org/10.1021/acsomega.8b00126 Text en Copyright © 2018 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Ping, Zhi Zhou, Feng Lin, Xin Su, Haibin Coupled Mutations-Enabled Glycerol Transportation in an Aquaporin Z Mutant |
title | Coupled Mutations-Enabled Glycerol Transportation
in an Aquaporin Z Mutant |
title_full | Coupled Mutations-Enabled Glycerol Transportation
in an Aquaporin Z Mutant |
title_fullStr | Coupled Mutations-Enabled Glycerol Transportation
in an Aquaporin Z Mutant |
title_full_unstemmed | Coupled Mutations-Enabled Glycerol Transportation
in an Aquaporin Z Mutant |
title_short | Coupled Mutations-Enabled Glycerol Transportation
in an Aquaporin Z Mutant |
title_sort | coupled mutations-enabled glycerol transportation
in an aquaporin z mutant |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641515/ https://www.ncbi.nlm.nih.gov/pubmed/31458647 http://dx.doi.org/10.1021/acsomega.8b00126 |
work_keys_str_mv | AT pingzhi coupledmutationsenabledglyceroltransportationinanaquaporinzmutant AT zhoufeng coupledmutationsenabledglyceroltransportationinanaquaporinzmutant AT linxin coupledmutationsenabledglyceroltransportationinanaquaporinzmutant AT suhaibin coupledmutationsenabledglyceroltransportationinanaquaporinzmutant |