Cargando…
Hierarchical Design of CuS Architectures for Visible Light Photocatalysis of 4-Chlorophenol
[Image: see text] Hydrothermal-assisted CuS hierarchical architectures were grown in the presence of anionic sulfur sources, and the investigation of their degradation efficiency for a pesticide 4-chlorophenol (4-CP) under visible light irradiation was carried out. The dissociation of S(2–) from the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641585/ https://www.ncbi.nlm.nih.gov/pubmed/31457704 http://dx.doi.org/10.1021/acsomega.7b00669 |
Sumario: | [Image: see text] Hydrothermal-assisted CuS hierarchical architectures were grown in the presence of anionic sulfur sources, and the investigation of their degradation efficiency for a pesticide 4-chlorophenol (4-CP) under visible light irradiation was carried out. The dissociation of S(2–) from the sulfur compound governs the nucleation of CuS followed by a specific pattern of growth to produce different morphologies. The self-assembled covellite spherical CuS flower architecture assembles in the presence of thiourea and exhibits the highest photodegradation activity. The open architecture of ∼2.3 μm spherical CuS flowers consisting of a ∼100 nm thick sheet encompasses a comparatively high surface area and particle growth along the (110) plane that facilitates more active sites for catalytic activity enhancement. The catalyst loading for 4-CP degradation has been optimized, and a detailed trapping mechanism has been explored. |
---|