Cargando…

Theoretical Investigation of the H(2)O(2)-Induced Degradation Mechanism of Hydrated Nafion Membrane via Ether-Linkage Dissociation

[Image: see text] A H(2)O(2)-induced degradation mechanism is presented for the hydrated Nafion membrane proceeding through the dissociation of the ether linkages of the side chains. Although the durability of proton-exchange membrane fuel cells clearly depends on the degradation rate of the membran...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsuneda, Takao, Singh, Raman K., Iiyama, Akihiro, Miyatake, Kenji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641634/
https://www.ncbi.nlm.nih.gov/pubmed/31457706
http://dx.doi.org/10.1021/acsomega.7b00594
Descripción
Sumario:[Image: see text] A H(2)O(2)-induced degradation mechanism is presented for the hydrated Nafion membrane proceeding through the dissociation of the ether linkages of the side chains. Although the durability of proton-exchange membrane fuel cells clearly depends on the degradation rate of the membrane, typically Nafion, the degradation mechanism still has not been resolved. It has often been assumed that the principal mode of degradation involves OH(•) radicals; in contrast, we show here that a H(2)O(2)-induced degradation mechanism is more likely. On the basis of state-of-the-art theoretical calculations and detailed comparison with experimental results, we present such a mechanism for the hydrated Nafion membrane, proceeding through the dissociation of the ether linkage of the side chains, with a relatively low activation energy. In this mechanism, (H(2)O)(λ)HO(3)S–CF(2)–CF(2)–O–O–H (λ is the hydration number) is obtained as a key degradation fragment. Possible subsequent decomposition-reaction mechanisms are also elucidated for this fragment. The calculated vibrational spectra for the intermediates and products proposed in these mechanisms were found to be consistent with the experimental IR spectra. Further consideration of this H(2)O(2)-mediated degradation mechanism could greatly facilitate the search for ways to combat membrane degradation.