Cargando…

Electron Transport Through Homopeptides: Are They Really Good Conductors?

[Image: see text] Motivated by recent experiments, we performed a theoretical study of electron transport through single-molecule junctions incorporating four kinds of homopeptides (based on alanine, glutamic acid, lysine, and tryptophan). Our results suggest that these molecules are rather insulati...

Descripción completa

Detalles Bibliográficos
Autores principales: Zotti, Linda A., Cuevas, Juan Carlos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641635/
https://www.ncbi.nlm.nih.gov/pubmed/31458620
http://dx.doi.org/10.1021/acsomega.7b01917
Descripción
Sumario:[Image: see text] Motivated by recent experiments, we performed a theoretical study of electron transport through single-molecule junctions incorporating four kinds of homopeptides (based on alanine, glutamic acid, lysine, and tryptophan). Our results suggest that these molecules are rather insulating and operate in off-resonance tunneling as their main transport mechanism. We ascribe their poor performance as conductors to the high localization of their frontier orbitals. We found that binding scenarios in which side chains lie on the side of gold protuberances could give rise to an increase in conductance with respect to end-to-end binding configurations. These findings provide an insight into the conductance mechanism of the building blocks of proteins and identify key issues that need to be further investigated.