Cargando…
High-Efficiency Double Absorber PbS/CdS Heterojunction Solar Cells by Enhanced Charge Collection Using a ZnO Nanorod Array
[Image: see text] The device architecture of solar cells remains critical in achieving high photoconversion efficiency while affordable and scalable routes are being explored. Here, we demonstrate a scalable, low cost, and less toxic synthesis route for the fabrication of PbS/CdS thin-film solar cel...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641925/ https://www.ncbi.nlm.nih.gov/pubmed/31457768 http://dx.doi.org/10.1021/acsomega.7b00999 |
Sumario: | [Image: see text] The device architecture of solar cells remains critical in achieving high photoconversion efficiency while affordable and scalable routes are being explored. Here, we demonstrate a scalable, low cost, and less toxic synthesis route for the fabrication of PbS/CdS thin-film solar cells with efficiencies as high as ∼5.59%, which is the highest efficiency obtained so far for the PbS-based solar cells not involving quantum dots. The devices use a stack of two band-aligned junctions that facilitates absorption of a wider range of the solar spectrum and an architectural modification of the electron-accepting electrode assembly consisting of a very thin CdS layer (∼10 nm) supported by vertically aligned ZnO nanorods on a ∼50 nm thick ZnO underlayer. Compared to a planar electrode of a 50 nm thick CdS film, the modified electrode assembly enhanced the efficiency by ∼39% primarily due to a significantly higher photon absorption in the PbS layer, as revealed by a detailed three-dimensional finite difference time-domain optoelectronic modeling of the device. |
---|