Cargando…
Quantum interference enables constant-time quantum information processing
It is an open question how fast information processing can be performed and whether quantum effects can speed up the best existing solutions. Signal extraction, analysis, and compression in diagnostics, astronomy, chemistry, and broadcasting build on the discrete Fourier transform. It is implemented...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641944/ https://www.ncbi.nlm.nih.gov/pubmed/31334346 http://dx.doi.org/10.1126/sciadv.aau9674 |
_version_ | 1783436890004783104 |
---|---|
author | Stobińska, M. Buraczewski, A. Moore, M. Clements, W. R. Renema, J. J. Nam, S. W. Gerrits, T. Lita, A. Kolthammer, W. S. Eckstein, A. Walmsley, I. A. |
author_facet | Stobińska, M. Buraczewski, A. Moore, M. Clements, W. R. Renema, J. J. Nam, S. W. Gerrits, T. Lita, A. Kolthammer, W. S. Eckstein, A. Walmsley, I. A. |
author_sort | Stobińska, M. |
collection | PubMed |
description | It is an open question how fast information processing can be performed and whether quantum effects can speed up the best existing solutions. Signal extraction, analysis, and compression in diagnostics, astronomy, chemistry, and broadcasting build on the discrete Fourier transform. It is implemented with the fast Fourier transform (FFT) algorithm that assumes a periodic input of specific lengths, which rarely holds true. A lesser-known transform, the Kravchuk-Fourier (KT), allows one to operate on finite strings of arbitrary length. It is of high demand in digital image processing and computer vision but features a prohibitive runtime. Here, we report a one-step computation of a fractional quantum KT. The quantum d-nary (qudit) architecture we use comprises only one gate and offers processing time independent of the input size. The gate may use a multiphoton Hong-Ou-Mandel effect. Existing quantum technologies may scale it up toward diverse applications. |
format | Online Article Text |
id | pubmed-6641944 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-66419442019-07-22 Quantum interference enables constant-time quantum information processing Stobińska, M. Buraczewski, A. Moore, M. Clements, W. R. Renema, J. J. Nam, S. W. Gerrits, T. Lita, A. Kolthammer, W. S. Eckstein, A. Walmsley, I. A. Sci Adv Research Articles It is an open question how fast information processing can be performed and whether quantum effects can speed up the best existing solutions. Signal extraction, analysis, and compression in diagnostics, astronomy, chemistry, and broadcasting build on the discrete Fourier transform. It is implemented with the fast Fourier transform (FFT) algorithm that assumes a periodic input of specific lengths, which rarely holds true. A lesser-known transform, the Kravchuk-Fourier (KT), allows one to operate on finite strings of arbitrary length. It is of high demand in digital image processing and computer vision but features a prohibitive runtime. Here, we report a one-step computation of a fractional quantum KT. The quantum d-nary (qudit) architecture we use comprises only one gate and offers processing time independent of the input size. The gate may use a multiphoton Hong-Ou-Mandel effect. Existing quantum technologies may scale it up toward diverse applications. American Association for the Advancement of Science 2019-07-19 /pmc/articles/PMC6641944/ /pubmed/31334346 http://dx.doi.org/10.1126/sciadv.aau9674 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Stobińska, M. Buraczewski, A. Moore, M. Clements, W. R. Renema, J. J. Nam, S. W. Gerrits, T. Lita, A. Kolthammer, W. S. Eckstein, A. Walmsley, I. A. Quantum interference enables constant-time quantum information processing |
title | Quantum interference enables constant-time quantum information processing |
title_full | Quantum interference enables constant-time quantum information processing |
title_fullStr | Quantum interference enables constant-time quantum information processing |
title_full_unstemmed | Quantum interference enables constant-time quantum information processing |
title_short | Quantum interference enables constant-time quantum information processing |
title_sort | quantum interference enables constant-time quantum information processing |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641944/ https://www.ncbi.nlm.nih.gov/pubmed/31334346 http://dx.doi.org/10.1126/sciadv.aau9674 |
work_keys_str_mv | AT stobinskam quantuminterferenceenablesconstanttimequantuminformationprocessing AT buraczewskia quantuminterferenceenablesconstanttimequantuminformationprocessing AT moorem quantuminterferenceenablesconstanttimequantuminformationprocessing AT clementswr quantuminterferenceenablesconstanttimequantuminformationprocessing AT renemajj quantuminterferenceenablesconstanttimequantuminformationprocessing AT namsw quantuminterferenceenablesconstanttimequantuminformationprocessing AT gerritst quantuminterferenceenablesconstanttimequantuminformationprocessing AT litaa quantuminterferenceenablesconstanttimequantuminformationprocessing AT kolthammerws quantuminterferenceenablesconstanttimequantuminformationprocessing AT ecksteina quantuminterferenceenablesconstanttimequantuminformationprocessing AT walmsleyia quantuminterferenceenablesconstanttimequantuminformationprocessing |