Cargando…

Quantum interference enables constant-time quantum information processing

It is an open question how fast information processing can be performed and whether quantum effects can speed up the best existing solutions. Signal extraction, analysis, and compression in diagnostics, astronomy, chemistry, and broadcasting build on the discrete Fourier transform. It is implemented...

Descripción completa

Detalles Bibliográficos
Autores principales: Stobińska, M., Buraczewski, A., Moore, M., Clements, W. R., Renema, J. J., Nam, S. W., Gerrits, T., Lita, A., Kolthammer, W. S., Eckstein, A., Walmsley, I. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641944/
https://www.ncbi.nlm.nih.gov/pubmed/31334346
http://dx.doi.org/10.1126/sciadv.aau9674
_version_ 1783436890004783104
author Stobińska, M.
Buraczewski, A.
Moore, M.
Clements, W. R.
Renema, J. J.
Nam, S. W.
Gerrits, T.
Lita, A.
Kolthammer, W. S.
Eckstein, A.
Walmsley, I. A.
author_facet Stobińska, M.
Buraczewski, A.
Moore, M.
Clements, W. R.
Renema, J. J.
Nam, S. W.
Gerrits, T.
Lita, A.
Kolthammer, W. S.
Eckstein, A.
Walmsley, I. A.
author_sort Stobińska, M.
collection PubMed
description It is an open question how fast information processing can be performed and whether quantum effects can speed up the best existing solutions. Signal extraction, analysis, and compression in diagnostics, astronomy, chemistry, and broadcasting build on the discrete Fourier transform. It is implemented with the fast Fourier transform (FFT) algorithm that assumes a periodic input of specific lengths, which rarely holds true. A lesser-known transform, the Kravchuk-Fourier (KT), allows one to operate on finite strings of arbitrary length. It is of high demand in digital image processing and computer vision but features a prohibitive runtime. Here, we report a one-step computation of a fractional quantum KT. The quantum d-nary (qudit) architecture we use comprises only one gate and offers processing time independent of the input size. The gate may use a multiphoton Hong-Ou-Mandel effect. Existing quantum technologies may scale it up toward diverse applications.
format Online
Article
Text
id pubmed-6641944
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-66419442019-07-22 Quantum interference enables constant-time quantum information processing Stobińska, M. Buraczewski, A. Moore, M. Clements, W. R. Renema, J. J. Nam, S. W. Gerrits, T. Lita, A. Kolthammer, W. S. Eckstein, A. Walmsley, I. A. Sci Adv Research Articles It is an open question how fast information processing can be performed and whether quantum effects can speed up the best existing solutions. Signal extraction, analysis, and compression in diagnostics, astronomy, chemistry, and broadcasting build on the discrete Fourier transform. It is implemented with the fast Fourier transform (FFT) algorithm that assumes a periodic input of specific lengths, which rarely holds true. A lesser-known transform, the Kravchuk-Fourier (KT), allows one to operate on finite strings of arbitrary length. It is of high demand in digital image processing and computer vision but features a prohibitive runtime. Here, we report a one-step computation of a fractional quantum KT. The quantum d-nary (qudit) architecture we use comprises only one gate and offers processing time independent of the input size. The gate may use a multiphoton Hong-Ou-Mandel effect. Existing quantum technologies may scale it up toward diverse applications. American Association for the Advancement of Science 2019-07-19 /pmc/articles/PMC6641944/ /pubmed/31334346 http://dx.doi.org/10.1126/sciadv.aau9674 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Stobińska, M.
Buraczewski, A.
Moore, M.
Clements, W. R.
Renema, J. J.
Nam, S. W.
Gerrits, T.
Lita, A.
Kolthammer, W. S.
Eckstein, A.
Walmsley, I. A.
Quantum interference enables constant-time quantum information processing
title Quantum interference enables constant-time quantum information processing
title_full Quantum interference enables constant-time quantum information processing
title_fullStr Quantum interference enables constant-time quantum information processing
title_full_unstemmed Quantum interference enables constant-time quantum information processing
title_short Quantum interference enables constant-time quantum information processing
title_sort quantum interference enables constant-time quantum information processing
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641944/
https://www.ncbi.nlm.nih.gov/pubmed/31334346
http://dx.doi.org/10.1126/sciadv.aau9674
work_keys_str_mv AT stobinskam quantuminterferenceenablesconstanttimequantuminformationprocessing
AT buraczewskia quantuminterferenceenablesconstanttimequantuminformationprocessing
AT moorem quantuminterferenceenablesconstanttimequantuminformationprocessing
AT clementswr quantuminterferenceenablesconstanttimequantuminformationprocessing
AT renemajj quantuminterferenceenablesconstanttimequantuminformationprocessing
AT namsw quantuminterferenceenablesconstanttimequantuminformationprocessing
AT gerritst quantuminterferenceenablesconstanttimequantuminformationprocessing
AT litaa quantuminterferenceenablesconstanttimequantuminformationprocessing
AT kolthammerws quantuminterferenceenablesconstanttimequantuminformationprocessing
AT ecksteina quantuminterferenceenablesconstanttimequantuminformationprocessing
AT walmsleyia quantuminterferenceenablesconstanttimequantuminformationprocessing