Cargando…
Semi-automated analysis of digital whole slides from humanized lung-cancer xenograft models for checkpoint inhibitor response prediction
We propose a deep learning workflow for the classification of hematoxylin and eosin stained histological whole-slide images of non-small-cell lung cancer. The workflow includes automatic extraction of meta-features for the characterization of the tumor. We show that the tissue-classification produce...
Autores principales: | Bug, Daniel, Feuerhake, Friedrich, Oswald, Eva, Schüler, Julia, Merhof, Dorit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6642041/ https://www.ncbi.nlm.nih.gov/pubmed/31360306 http://dx.doi.org/10.18632/oncotarget.27069 |
Ejemplares similares
-
Removing defocused objects from single focal plane scans of cytological slides
por: Friedrich, David, et al.
Publicado: (2016) -
Immune cell infiltration pattern in non-small cell lung cancer PDX models is a model immanent feature and correlates with a distinct molecular and phenotypic make-up
por: Oswald, Eva, et al.
Publicado: (2022) -
Automated analysis of whole slide digital skin biopsy images
por: Nofallah, Shima, et al.
Publicado: (2022) -
State of the Art Cell Detection in Bone Marrow Whole Slide Images
por: Gräbel, Philipp, et al.
Publicado: (2021) -
Unsupervised many-to-many stain translation for histological image augmentation to improve classification accuracy
por: Berijanian, Maryam, et al.
Publicado: (2023)