Cargando…

Dynamical nonlinear memory capacitance in biomimetic membranes

Two-terminal memory elements, or memelements, capable of co-locating signal processing and memory via history-dependent reconfigurability at the nanoscale are vital for next-generation computing materials striving to match the brain’s efficiency and flexible cognitive capabilities. While memory resi...

Descripción completa

Detalles Bibliográficos
Autores principales: Najem, Joseph S., Hasan, Md Sakib, Williams, R. Stanley, Weiss, Ryan J., Rose, Garrett S., Taylor, Graham J., Sarles, Stephen A., Collier, C. Patrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6642212/
https://www.ncbi.nlm.nih.gov/pubmed/31324794
http://dx.doi.org/10.1038/s41467-019-11223-8
_version_ 1783436938282270720
author Najem, Joseph S.
Hasan, Md Sakib
Williams, R. Stanley
Weiss, Ryan J.
Rose, Garrett S.
Taylor, Graham J.
Sarles, Stephen A.
Collier, C. Patrick
author_facet Najem, Joseph S.
Hasan, Md Sakib
Williams, R. Stanley
Weiss, Ryan J.
Rose, Garrett S.
Taylor, Graham J.
Sarles, Stephen A.
Collier, C. Patrick
author_sort Najem, Joseph S.
collection PubMed
description Two-terminal memory elements, or memelements, capable of co-locating signal processing and memory via history-dependent reconfigurability at the nanoscale are vital for next-generation computing materials striving to match the brain’s efficiency and flexible cognitive capabilities. While memory resistors, or memristors, have been widely reported, other types of memelements remain underexplored or undiscovered. Here we report the first example of a volatile, voltage-controlled memcapacitor in which capacitive memory arises from reversible and hysteretic geometrical changes in a lipid bilayer that mimics the composition and structure of biomembranes. We demonstrate that the nonlinear dynamics and memory are governed by two implicitly-coupled, voltage-dependent state variables—membrane radius and thickness. Further, our system is capable of tuneable signal processing and learning via synapse-like, short-term capacitive plasticity. These findings will accelerate the development of low-energy, biomolecular neuromorphic memelements, which, in turn, could also serve as models to study capacitive memory and signal processing in neuronal membranes.
format Online
Article
Text
id pubmed-6642212
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-66422122019-07-22 Dynamical nonlinear memory capacitance in biomimetic membranes Najem, Joseph S. Hasan, Md Sakib Williams, R. Stanley Weiss, Ryan J. Rose, Garrett S. Taylor, Graham J. Sarles, Stephen A. Collier, C. Patrick Nat Commun Article Two-terminal memory elements, or memelements, capable of co-locating signal processing and memory via history-dependent reconfigurability at the nanoscale are vital for next-generation computing materials striving to match the brain’s efficiency and flexible cognitive capabilities. While memory resistors, or memristors, have been widely reported, other types of memelements remain underexplored or undiscovered. Here we report the first example of a volatile, voltage-controlled memcapacitor in which capacitive memory arises from reversible and hysteretic geometrical changes in a lipid bilayer that mimics the composition and structure of biomembranes. We demonstrate that the nonlinear dynamics and memory are governed by two implicitly-coupled, voltage-dependent state variables—membrane radius and thickness. Further, our system is capable of tuneable signal processing and learning via synapse-like, short-term capacitive plasticity. These findings will accelerate the development of low-energy, biomolecular neuromorphic memelements, which, in turn, could also serve as models to study capacitive memory and signal processing in neuronal membranes. Nature Publishing Group UK 2019-07-19 /pmc/articles/PMC6642212/ /pubmed/31324794 http://dx.doi.org/10.1038/s41467-019-11223-8 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Najem, Joseph S.
Hasan, Md Sakib
Williams, R. Stanley
Weiss, Ryan J.
Rose, Garrett S.
Taylor, Graham J.
Sarles, Stephen A.
Collier, C. Patrick
Dynamical nonlinear memory capacitance in biomimetic membranes
title Dynamical nonlinear memory capacitance in biomimetic membranes
title_full Dynamical nonlinear memory capacitance in biomimetic membranes
title_fullStr Dynamical nonlinear memory capacitance in biomimetic membranes
title_full_unstemmed Dynamical nonlinear memory capacitance in biomimetic membranes
title_short Dynamical nonlinear memory capacitance in biomimetic membranes
title_sort dynamical nonlinear memory capacitance in biomimetic membranes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6642212/
https://www.ncbi.nlm.nih.gov/pubmed/31324794
http://dx.doi.org/10.1038/s41467-019-11223-8
work_keys_str_mv AT najemjosephs dynamicalnonlinearmemorycapacitanceinbiomimeticmembranes
AT hasanmdsakib dynamicalnonlinearmemorycapacitanceinbiomimeticmembranes
AT williamsrstanley dynamicalnonlinearmemorycapacitanceinbiomimeticmembranes
AT weissryanj dynamicalnonlinearmemorycapacitanceinbiomimeticmembranes
AT rosegarretts dynamicalnonlinearmemorycapacitanceinbiomimeticmembranes
AT taylorgrahamj dynamicalnonlinearmemorycapacitanceinbiomimeticmembranes
AT sarlesstephena dynamicalnonlinearmemorycapacitanceinbiomimeticmembranes
AT colliercpatrick dynamicalnonlinearmemorycapacitanceinbiomimeticmembranes