Cargando…
Identifying signal-dependent information about the preictal state: A comparison across ECoG, EEG and EKG using deep learning
BACKGROUND: The inability to reliably assess seizure risk is a major burden for epilepsy patients and prevents developing better treatments. Recent advances have paved the way for increasingly accurate seizure preictal state detection algorithms, primarily using electrocorticography (ECoG). To devel...
Autores principales: | Meisel, Christian, Bailey, Kimberlyn A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6642360/ https://www.ncbi.nlm.nih.gov/pubmed/31300348 http://dx.doi.org/10.1016/j.ebiom.2019.07.001 |
Ejemplares similares
-
Magnetoencephalography-identified preictal spiking correlates to preictal spiking on stereotactic EEG
por: Zillgitt, Andrew, et al.
Publicado: (2022) -
Modular pipeline for reconstruction and localization of implanted intracranial ECoG and sEEG electrodes
por: Soper, Daniel J., et al.
Publicado: (2023) -
EECoG-Comp: An Open Source Platform for Concurrent EEG/ECoG Comparisons—Applications to Connectivity Studies
por: Wang, Qing, et al.
Publicado: (2019) -
Self-Regulated Dynamical Criticality in Human ECoG
por: Solovey, Guillermo, et al.
Publicado: (2012) -
Large-Scale Information Flow in Conscious and Unconscious States: an ECoG Study in Monkeys
por: Yanagawa, Toru, et al.
Publicado: (2013)