Cargando…
A modern maximum-likelihood theory for high-dimensional logistic regression
Students in statistics or data science usually learn early on that when the sample size [Formula: see text] is large relative to the number of variables [Formula: see text] , fitting a logistic model by the method of maximum likelihood produces estimates that are consistent and that there are well-k...
Autores principales: | Sur, Pragya, Candès, Emmanuel J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6642380/ https://www.ncbi.nlm.nih.gov/pubmed/31262828 http://dx.doi.org/10.1073/pnas.1810420116 |
Ejemplares similares
-
High-dimensional representation of texture in somatosensory cortex of primates
por: Lieber, Justin D., et al.
Publicado: (2019) -
Optimal errors and phase transitions in high-dimensional generalized linear models
por: Barbier, Jean, et al.
Publicado: (2019) -
Randomly distributed embedding making short-term high-dimensional data predictable
por: Ma, Huanfei, et al.
Publicado: (2018) -
Genetic instrumental variable regression: Explaining socioeconomic and health outcomes in nonexperimental data
por: DiPrete, Thomas A., et al.
Publicado: (2018) -
High-resolution contrast-enhanced microCT reveals the true
three-dimensional morphology of the murine placenta
por: De Clercq, Katrien, et al.
Publicado: (2019)