Cargando…
Exploring Douglas-Peucker Algorithm in the Detection of Epileptic Seizure from Multicategory EEG Signals
Discovering the concealed patterns of Electroencephalogram (EEG) signals is a crucial part in efficient detection of epileptic seizures. This study develops a new scheme based on Douglas-Peucker algorithm (DP) and principal component analysis (PCA) for extraction of representative and discriminatory...
Autores principales: | Zarei, Roozbeh, He, Jing, Siuly, Siuly, Huang, Guangyan, Zhang, Yanchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6642761/ https://www.ncbi.nlm.nih.gov/pubmed/31360715 http://dx.doi.org/10.1155/2019/5173589 |
Ejemplares similares
-
Exploring Sampling in the Detection of Multicategory EEG Signals
por: Siuly, Siuly, et al.
Publicado: (2015) -
Epileptic seizure detection from EEG signals using logistic model trees
por: Kabir, Enamul, et al.
Publicado: (2016) -
Exploring deep residual network based features for automatic schizophrenia detection from EEG
por: Siuly, Siuly, et al.
Publicado: (2023) -
A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG
por: Tawhid, Md. Nurul Ahad, et al.
Publicado: (2021) -
Textural feature based intelligent approach for neurological abnormality detection from brain signal data
por: Tawhid, Md. Nurul Ahad, et al.
Publicado: (2022)