Cargando…

A knottin scaffold directs the CXC-chemokine–binding specificity of tick evasins

Tick evasins (EVAs) bind either CC- or CXC-chemokines by a poorly understood promiscuous or “one-to-many” mechanism to neutralize inflammation. Because EVAs potently inhibit inflammation in many preclinical models, highlighting their potential as biological therapeutics for inflammatory diseases, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Angela W., Deruaz, Maud, Lynch, Christopher, Davies, Graham, Singh, Kamayani, Alenazi, Yara, Eaton, James R. O., Kawamura, Akane, Shaw, Jeffrey, Proudfoot, Amanda E. I., Dias, João M., Bhattacharya, Shoumo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643034/
https://www.ncbi.nlm.nih.gov/pubmed/31167786
http://dx.doi.org/10.1074/jbc.RA119.008817
Descripción
Sumario:Tick evasins (EVAs) bind either CC- or CXC-chemokines by a poorly understood promiscuous or “one-to-many” mechanism to neutralize inflammation. Because EVAs potently inhibit inflammation in many preclinical models, highlighting their potential as biological therapeutics for inflammatory diseases, we sought to further unravel the CXC-chemokine–EVA interactions. Using yeast surface display, we identified and characterized 27 novel CXC-chemokine–binding evasins homologous to EVA3 and defined two functional classes. The first, which included EVA3, exclusively bound ELR(+) CXC-chemokines, whereas the second class bound both ELR(+) and ELR(−) CXC-chemokines, in several cases including CXC-motif chemokine ligand 10 (CXCL10) but, surprisingly, not CXCL8. The X-ray crystal structure of EVA3 at a resolution of 1.79 Å revealed a single antiparallel β-sheet with six conserved cysteine residues forming a disulfide-bonded knottin scaffold that creates a contiguous solvent-accessible surface. Swapping analyses identified distinct knottin scaffold segments necessary for different CXC-chemokine–binding activities, implying that differential ligand positioning, at least in part, plays a role in promiscuous binding. Swapping segments also transferred chemokine-binding activity, resulting in a hybrid EVA with dual CXCL10- and CXCL8-binding activities. The solvent-accessible surfaces of the knottin scaffold segments have distinctive shape and charge, which we suggest drives chemokine-binding specificity. These studies provide structural and mechanistic insight into how CXC-chemokine–binding tick EVAs achieve class specificity but also engage in promiscuous binding.