Cargando…

The interaction of silica nanoparticles with catalase and human mesenchymal stem cells: biophysical, theoretical and cellular studies

AIM: Nanoparticles (NPs) have been receiving potential interests in protein delivery and cell therapy. As a matter of fact, NPs may be used as great candidates in promoting cell therapy by catalase (CAT) delivery into high oxidative stress tissues. However, for using NPs like SiO(2) as carriers, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Mousavi, Mina, Hakimian, Saman, Mustafa, Twana Ahmed, Aziz, Falah Mohammad, Salihi, Abbas, Ale-Ebrahim, Mahsa, Mirpour, Mirsasan, Rasti, Behnam, Akhtari, Keivan, Shahpasand, Koorosh, Abou-Zied, Osama K, Falahati, Mojtaba
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643057/
https://www.ncbi.nlm.nih.gov/pubmed/31409992
http://dx.doi.org/10.2147/IJN.S210136
Descripción
Sumario:AIM: Nanoparticles (NPs) have been receiving potential interests in protein delivery and cell therapy. As a matter of fact, NPs may be used as great candidates in promoting cell therapy by catalase (CAT) delivery into high oxidative stress tissues. However, for using NPs like SiO(2) as carriers, the interaction of NPs with proteins and mesenchymal stem cells (MSCs) should be explored in advance. METHODS: In the present study, the interaction of SiO(2) NPs with CAT and human MSCs (hMSCs) was explored by various spectroscopic methods (fluorescence, circular dichroism (CD), UV-visible), molecular docking and dynamics studies, and cellular (MTT, cellular morphology, cellular uptake, lactate dehydrogenase, ROS, caspase-3, flow cytometry) assays. RESULTS: Fluorescence study displayed that both dynamic and static quenching mechanisms and hydrophobic interactions are involved in the spontaneous interaction of SiO(2) NPs with CAT. CD spectra indicated that native structure of CAT remains stable after interaction with SiO(2) NPs. UV-visible study also revealed that the kinetic parameters of CAT such as Km, Vmax, Kcat, and enzyme efficiency were not changed after the addition of SiO(2) NPs. Molecular docking and dynamics studies showed that Si and SiO(2) clusters interact with hydrophobic residues of CAT and SiO(2) cluster causes minor changes in the CAT structure at a total simulation time of 200 ps. Cellular assays depicted that SiO(2) NPs induce significant cell mortality, change in cellular morphology, cellular internalization, ROS elevation, and apoptosis in hMSCs at higher concentration than 100 µg/mL (170 µM). CONCLUSION: The current results suggest that low concentrations of SiO(2) NPs induce no substantial change or mortality against CAT and hMSCs, and potentially useful carriers in CAT delivery to hMSC.