Cargando…
Salt Water-Triggered Ionic Cross-Linking of Polymer Composites by Controlled Release of Functional Ions
[Image: see text] A composite that undergoes ionic cross-linking in the presence of salt water is presented as a viable strategy for the development of chemically responsive materials. The permeation of salt water through the composite activates embedded inorganic fillers, resulting in the release o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643778/ https://www.ncbi.nlm.nih.gov/pubmed/31458249 http://dx.doi.org/10.1021/acsomega.8b02786 |
Sumario: | [Image: see text] A composite that undergoes ionic cross-linking in the presence of salt water is presented as a viable strategy for the development of chemically responsive materials. The permeation of salt water through the composite activates embedded inorganic fillers, resulting in the release of functional ions and subsequent cross-linking with the functional groups of the polymer matrix. The release of a cross-linking agent from the inorganic filler and composite is evaluated along with the impact of the cross-linking on composite properties. The new methodology is then coupled with a dopamine-functionalized polymer in order to evaluate the potential of this approach for environmentally triggered self-healing materials. |
---|