Cargando…

Hierarchically Patterned Elastomeric and Thermoplastic Polymer Films through Nanoimprinting and Ultraviolet Light Exposure

[Image: see text] The surface relief structure of polymer films over large areas can be controlled by combining nanoscale imprinting and microscale ultraviolet–ozone (UVO) radiation, resulting in hierarchical structured surfaces. First, nanoscale patterns were formed by nanoimprinting elastomer [pol...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Ying, Wang, Zilu, Kulkarni, Manish M., Wang, Xiaoteng, Al-Enizi, Abdullah M., Elzatahry, Ahmed A., Douglas, Jack F., Dobrynin, Andrey V., Karim, Alamgir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643988/
https://www.ncbi.nlm.nih.gov/pubmed/31458199
http://dx.doi.org/10.1021/acsomega.7b01116
Descripción
Sumario:[Image: see text] The surface relief structure of polymer films over large areas can be controlled by combining nanoscale imprinting and microscale ultraviolet–ozone (UVO) radiation, resulting in hierarchical structured surfaces. First, nanoscale patterns were formed by nanoimprinting elastomer [poly(dimethylsiloxane) (PDMS)] films with a pattern on a digital video disk. Micron-scale patterns were then superimposed on the nanoimprinted PDMS films by exposing them to ultraviolet radiation in oxygen (UVO) through a transmission electron microscopy grid mask having variable microscale patterning. UVO exposure leads to conversion and densification of PDMS to SiO(x), leading to micron height relief features that follow a linear scaling relation with pattern dimension. Further, the pattern scopes are shown to collapse into a master curve by normalized feature values. Interestingly, these relief structures preserve the nanoscale features. In this paper, the influence of the self-limiting PDMS densification, wall stress at the boundary of micro-depression, and UVO exposure energy is studied in control of the micro-depression scale. This simple two-step imprinting process involving both nanoimprinting and UV radiation allows for facile fabrication of the dimension adjustable micro–nano hierarchically structures not only on elastomer films but also on thermoplastic polymer films. Coarse-grained molecular dynamics simulations were performed to correlate the surface tension and elastic properties of polymeric materials to the deformation of the pattern structure.