Cargando…
Long Carbon Nanotubes Functionalized with DNA and Implications for Spintronics
[Image: see text] Helical molecules such as DNA have recently been found to behave as an efficient source and detector of spin-polarized charge carriers. This phenomenon, often dubbed as chirality-induced spin selectivity or CISS, could be used to significantly improve the performance of spintronic...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644094/ https://www.ncbi.nlm.nih.gov/pubmed/31458331 http://dx.doi.org/10.1021/acsomega.8b02237 |
_version_ | 1783437194668539904 |
---|---|
author | Rahman, Md. Wazedur Alam, Kazi M. Pramanik, Sandipan |
author_facet | Rahman, Md. Wazedur Alam, Kazi M. Pramanik, Sandipan |
author_sort | Rahman, Md. Wazedur |
collection | PubMed |
description | [Image: see text] Helical molecules such as DNA have recently been found to behave as an efficient source and detector of spin-polarized charge carriers. This phenomenon, often dubbed as chirality-induced spin selectivity or CISS, could be used to significantly improve the performance of spintronic devices, which utilize carrier spins (rather than charge) to realize electronic and sensing functions. Recently, it has been reported that carbon nanotubes, helically wrapped with DNA, can also act as an efficient source and detector of spin-polarized carriers, by virtue of spin–orbit coupling originating from the helical potential. It has been postulated that spin polarization should increase with the length of the wrapped tubes. However, in literature, most fabrication processes yield tubes with submicron lengths, which can produce ∼70% spin polarization. In an effort to enhance this effect further, here, we report a fabrication process that can yield DNA-wrapped nanotubes of length ∼1–4 microns. Detailed characterization of these devices, using atomic force microscopy, Raman, UV–vis, and temperature-dependent transport, has been presented. Initial transport measurements indicate the presence of strong magnetoresistance in these tubes, which could be attributed to spin-dependent effects. Systematic fabrication of long DNA-wrapped nanotubes, which has hitherto not been reported, is expected to enable further investigation into the spin-dependent properties of these ultimate one-dimensional nanoscale hybrids and may have a significant impact on nanoscale spintronics. |
format | Online Article Text |
id | pubmed-6644094 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-66440942019-08-27 Long Carbon Nanotubes Functionalized with DNA and Implications for Spintronics Rahman, Md. Wazedur Alam, Kazi M. Pramanik, Sandipan ACS Omega [Image: see text] Helical molecules such as DNA have recently been found to behave as an efficient source and detector of spin-polarized charge carriers. This phenomenon, often dubbed as chirality-induced spin selectivity or CISS, could be used to significantly improve the performance of spintronic devices, which utilize carrier spins (rather than charge) to realize electronic and sensing functions. Recently, it has been reported that carbon nanotubes, helically wrapped with DNA, can also act as an efficient source and detector of spin-polarized carriers, by virtue of spin–orbit coupling originating from the helical potential. It has been postulated that spin polarization should increase with the length of the wrapped tubes. However, in literature, most fabrication processes yield tubes with submicron lengths, which can produce ∼70% spin polarization. In an effort to enhance this effect further, here, we report a fabrication process that can yield DNA-wrapped nanotubes of length ∼1–4 microns. Detailed characterization of these devices, using atomic force microscopy, Raman, UV–vis, and temperature-dependent transport, has been presented. Initial transport measurements indicate the presence of strong magnetoresistance in these tubes, which could be attributed to spin-dependent effects. Systematic fabrication of long DNA-wrapped nanotubes, which has hitherto not been reported, is expected to enable further investigation into the spin-dependent properties of these ultimate one-dimensional nanoscale hybrids and may have a significant impact on nanoscale spintronics. American Chemical Society 2018-12-12 /pmc/articles/PMC6644094/ /pubmed/31458331 http://dx.doi.org/10.1021/acsomega.8b02237 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Rahman, Md. Wazedur Alam, Kazi M. Pramanik, Sandipan Long Carbon Nanotubes Functionalized with DNA and Implications for Spintronics |
title | Long Carbon Nanotubes Functionalized with DNA and
Implications for Spintronics |
title_full | Long Carbon Nanotubes Functionalized with DNA and
Implications for Spintronics |
title_fullStr | Long Carbon Nanotubes Functionalized with DNA and
Implications for Spintronics |
title_full_unstemmed | Long Carbon Nanotubes Functionalized with DNA and
Implications for Spintronics |
title_short | Long Carbon Nanotubes Functionalized with DNA and
Implications for Spintronics |
title_sort | long carbon nanotubes functionalized with dna and
implications for spintronics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644094/ https://www.ncbi.nlm.nih.gov/pubmed/31458331 http://dx.doi.org/10.1021/acsomega.8b02237 |
work_keys_str_mv | AT rahmanmdwazedur longcarbonnanotubesfunctionalizedwithdnaandimplicationsforspintronics AT alamkazim longcarbonnanotubesfunctionalizedwithdnaandimplicationsforspintronics AT pramaniksandipan longcarbonnanotubesfunctionalizedwithdnaandimplicationsforspintronics |