Cargando…
Vinyl-Linked Cyanocarbazole-Based Emitters: Effect of Conjugation and Terminal Chromophores on the Photophysical and Electroluminescent Properties
[Image: see text] A series of carbazole-based dyes functionalized with different auxochromes via vinyl linker have been synthesized and characterized. A progressive shift in the absorption maximum is observed as the conjugation and electron-donating nature of chromophore increases. Dyes containing e...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644140/ https://www.ncbi.nlm.nih.gov/pubmed/31458283 http://dx.doi.org/10.1021/acsomega.8b02198 |
Sumario: | [Image: see text] A series of carbazole-based dyes functionalized with different auxochromes via vinyl linker have been synthesized and characterized. A progressive shift in the absorption maximum is observed as the conjugation and electron-donating nature of chromophore increases. Dyes containing electron-releasing terminal groups such as triphenylamine and carbazole exhibited positive emission solvatochromism attributable to an induced intramolecular charge transfer from triphenylamine/carbazole donor to cyano acceptor. The superior electroluminescence performance of disubstituted dyes demonstrates the role of an additional cyanocarbazole in achieving balanced charge transport compared to monosubstituted analogues. In addition, the electroluminescence performance of the dyes exhibited trends attributable to the electron richness of the linker/terminal chromophore. Thus, the carbazole-based derivatives displayed better electroluminescence efficiency than the analogous fluorene derivatives. Similarly, 2,7-substituted carbazole derivative exhibited better performance than the 3,6-substituted carbazole derivative. A doped electroluminescent device containing 3 wt % tricarbazole derivative showed blue emission with a high external quantum efficiency of 5.3% at a practical brightness of 1000 cd/m(2). |
---|